13 #ifndef KMP_WAIT_RELEASE_H 14 #define KMP_WAIT_RELEASE_H 18 #include "kmp_stats.h" 20 #include "ompt-specific.h" 55 volatile P *
get() {
return loc; }
56 void *get_void_p() {
return RCAST(
void *, CCAST(P *, loc)); }
57 void set(
volatile P *new_loc) { loc = new_loc; }
59 P load() {
return *loc; }
60 void store(P val) { *loc = val; }
77 std::atomic<P> *
get() {
return loc; }
85 void set(std::atomic<P> *new_loc) { loc = new_loc; }
93 P
load() {
return loc->load(std::memory_order_acquire); }
97 void store(P val) { loc->store(val, std::memory_order_release); }
122 static void __ompt_implicit_task_end(kmp_info_t *this_thr,
123 ompt_state_t ompt_state,
125 int ds_tid = this_thr->th.th_info.ds.ds_tid;
126 if (ompt_state == ompt_state_wait_barrier_implicit) {
127 this_thr->th.ompt_thread_info.state = ompt_state_overhead;
129 void *codeptr = NULL;
130 if (ompt_enabled.ompt_callback_sync_region_wait) {
131 ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)(
132 ompt_sync_region_barrier_implicit, ompt_scope_end, NULL, tId,
135 if (ompt_enabled.ompt_callback_sync_region) {
136 ompt_callbacks.ompt_callback(ompt_callback_sync_region)(
137 ompt_sync_region_barrier_implicit, ompt_scope_end, NULL, tId,
141 if (!KMP_MASTER_TID(ds_tid)) {
142 if (ompt_enabled.ompt_callback_implicit_task) {
143 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
144 ompt_scope_end, NULL, tId, 0, ds_tid, ompt_task_implicit);
147 this_thr->th.ompt_thread_info.state = ompt_state_idle;
149 this_thr->th.ompt_thread_info.state = ompt_state_overhead;
160 template <
class C,
int final_spin,
bool cancellable =
false,
161 bool sleepable =
true>
163 __kmp_wait_template(kmp_info_t *this_thr,
164 C *flag USE_ITT_BUILD_ARG(
void *itt_sync_obj)) {
165 #if USE_ITT_BUILD && USE_ITT_NOTIFY 166 volatile void *spin = flag->get();
170 int tasks_completed = FALSE;
173 kmp_uint64 poll_count;
174 kmp_uint64 hibernate_goal;
176 kmp_uint32 hibernate;
179 KMP_FSYNC_SPIN_INIT(spin, NULL);
180 if (flag->done_check()) {
181 KMP_FSYNC_SPIN_ACQUIRED(CCAST(
void *, spin));
184 th_gtid = this_thr->th.th_info.ds.ds_gtid;
186 kmp_team_t *team = this_thr->th.th_team;
187 if (team && team->t.t_cancel_request == cancel_parallel)
192 KMP_ATOMIC_ST_REL(&this_thr->th.th_blocking,
true);
195 (
"__kmp_wait_sleep: T#%d waiting for flag(%p)\n", th_gtid, flag));
196 #if KMP_STATS_ENABLED 251 ompt_state_t ompt_entry_state;
253 if (ompt_enabled.enabled) {
254 ompt_entry_state = this_thr->th.ompt_thread_info.state;
255 if (!final_spin || ompt_entry_state != ompt_state_wait_barrier_implicit ||
256 KMP_MASTER_TID(this_thr->th.th_info.ds.ds_tid)) {
257 ompt_lw_taskteam_t *team =
258 this_thr->th.th_team->t.ompt_serialized_team_info;
260 tId = &(team->ompt_task_info.task_data);
262 tId = OMPT_CUR_TASK_DATA(this_thr);
265 tId = &(this_thr->th.ompt_thread_info.task_data);
267 if (final_spin && (__kmp_tasking_mode == tskm_immediate_exec ||
268 this_thr->th.th_task_team == NULL)) {
270 __ompt_implicit_task_end(this_thr, ompt_entry_state, tId);
275 KMP_INIT_YIELD(spins);
277 if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME ||
278 __kmp_pause_status == kmp_soft_paused) {
282 #ifdef KMP_ADJUST_BLOCKTIME 283 if (__kmp_pause_status == kmp_soft_paused ||
284 (__kmp_zero_bt && !this_thr->th.th_team_bt_set))
289 hibernate = this_thr->th.th_team_bt_intervals;
291 hibernate = this_thr->th.th_team_bt_intervals;
302 hibernate += TCR_4(__kmp_global.g.g_time.dt.t_value);
303 KF_TRACE(20, (
"__kmp_wait_sleep: T#%d now=%d, hibernate=%d, intervals=%d\n",
304 th_gtid, __kmp_global.g.g_time.dt.t_value, hibernate,
305 hibernate - __kmp_global.g.g_time.dt.t_value));
307 if (__kmp_pause_status == kmp_soft_paused) {
309 hibernate_goal = KMP_NOW();
311 hibernate_goal = KMP_NOW() + this_thr->th.th_team_bt_intervals;
313 #endif // KMP_USE_MONITOR 316 oversubscribed = (TCR_4(__kmp_nth) > __kmp_avail_proc);
320 while (flag->notdone_check()) {
321 kmp_task_team_t *task_team = NULL;
322 if (__kmp_tasking_mode != tskm_immediate_exec) {
323 task_team = this_thr->th.th_task_team;
331 if (task_team != NULL) {
332 if (TCR_SYNC_4(task_team->tt.tt_active)) {
333 if (KMP_TASKING_ENABLED(task_team))
335 this_thr, th_gtid, final_spin,
336 &tasks_completed USE_ITT_BUILD_ARG(itt_sync_obj), 0);
338 this_thr->th.th_reap_state = KMP_SAFE_TO_REAP;
340 KMP_DEBUG_ASSERT(!KMP_MASTER_TID(this_thr->th.th_info.ds.ds_tid));
343 if (final_spin && ompt_enabled.enabled)
344 __ompt_implicit_task_end(this_thr, ompt_entry_state, tId);
346 this_thr->th.th_task_team = NULL;
347 this_thr->th.th_reap_state = KMP_SAFE_TO_REAP;
350 this_thr->th.th_reap_state = KMP_SAFE_TO_REAP;
354 KMP_FSYNC_SPIN_PREPARE(CCAST(
void *, spin));
355 if (TCR_4(__kmp_global.g.g_done)) {
356 if (__kmp_global.g.g_abort)
357 __kmp_abort_thread();
363 KMP_YIELD_OVERSUB_ELSE_SPIN(spins);
365 #if KMP_STATS_ENABLED 368 if (this_thr->th.th_stats->isIdle() &&
369 KMP_GET_THREAD_STATE() == FORK_JOIN_BARRIER) {
370 KMP_SET_THREAD_STATE(IDLE);
371 KMP_PUSH_PARTITIONED_TIMER(OMP_idle);
376 kmp_team_t *team = this_thr->th.th_team;
377 if (team && team->t.t_cancel_request == cancel_parallel)
382 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME &&
383 __kmp_pause_status != kmp_soft_paused)
387 if ((task_team != NULL) && TCR_4(task_team->tt.tt_found_tasks))
392 if (TCR_4(__kmp_global.g.g_time.dt.t_value) < hibernate)
395 if (KMP_BLOCKING(hibernate_goal, poll_count++))
403 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME &&
404 __kmp_pause_status != kmp_soft_paused)
407 KF_TRACE(50, (
"__kmp_wait_sleep: T#%d suspend time reached\n", th_gtid));
411 KMP_ATOMIC_ST_REL(&this_thr->th.th_blocking,
false);
413 flag->suspend(th_gtid);
416 KMP_ATOMIC_ST_REL(&this_thr->th.th_blocking,
true);
419 if (TCR_4(__kmp_global.g.g_done)) {
420 if (__kmp_global.g.g_abort)
421 __kmp_abort_thread();
423 }
else if (__kmp_tasking_mode != tskm_immediate_exec &&
424 this_thr->th.th_reap_state == KMP_SAFE_TO_REAP) {
425 this_thr->th.th_reap_state = KMP_NOT_SAFE_TO_REAP;
431 ompt_state_t ompt_exit_state = this_thr->th.ompt_thread_info.state;
432 if (ompt_enabled.enabled && ompt_exit_state != ompt_state_undefined) {
435 __ompt_implicit_task_end(this_thr, ompt_exit_state, tId);
436 ompt_exit_state = this_thr->th.ompt_thread_info.state;
439 if (ompt_exit_state == ompt_state_idle) {
440 this_thr->th.ompt_thread_info.state = ompt_state_overhead;
444 #if KMP_STATS_ENABLED 446 if (KMP_GET_THREAD_STATE() == IDLE) {
447 KMP_POP_PARTITIONED_TIMER();
448 KMP_SET_THREAD_STATE(thread_state);
449 this_thr->th.th_stats->resetIdleFlag();
455 KMP_ATOMIC_ST_REL(&this_thr->th.th_blocking,
false);
457 KMP_FSYNC_SPIN_ACQUIRED(CCAST(
void *, spin));
459 kmp_team_t *team = this_thr->th.th_team;
460 if (team && team->t.t_cancel_request == cancel_parallel) {
461 if (tasks_completed) {
464 kmp_task_team_t *task_team = this_thr->th.th_task_team;
465 std::atomic<kmp_int32> *unfinished_threads =
466 &(task_team->tt.tt_unfinished_threads);
467 KMP_ATOMIC_INC(unfinished_threads);
479 template <
class C>
static inline void __kmp_release_template(C *flag) {
481 int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
483 KF_TRACE(20, (
"__kmp_release: T#%d releasing flag(%x)\n", gtid, flag->get()));
484 KMP_DEBUG_ASSERT(flag->get());
485 KMP_FSYNC_RELEASING(flag->get_void_p());
487 flag->internal_release();
489 KF_TRACE(100, (
"__kmp_release: T#%d set new spin=%d\n", gtid, flag->get(),
492 if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) {
495 if (flag->is_any_sleeping()) {
496 for (
unsigned int i = 0; i < flag->get_num_waiters(); ++i) {
498 kmp_info_t *waiter = flag->get_waiter(i);
500 int wait_gtid = waiter->th.th_info.ds.ds_gtid;
502 KF_TRACE(50, (
"__kmp_release: T#%d waking up thread T#%d since sleep " 504 gtid, wait_gtid, flag->get()));
505 flag->resume(wait_gtid);
512 template <
typename FlagType>
struct flag_traits {};
514 template <>
struct flag_traits<kmp_uint32> {
515 typedef kmp_uint32 flag_t;
517 static inline flag_t tcr(flag_t f) {
return TCR_4(f); }
518 static inline flag_t test_then_add4(
volatile flag_t *f) {
519 return KMP_TEST_THEN_ADD4_32(RCAST(
volatile kmp_int32 *, f));
521 static inline flag_t test_then_or(
volatile flag_t *f, flag_t v) {
522 return KMP_TEST_THEN_OR32(f, v);
524 static inline flag_t test_then_and(
volatile flag_t *f, flag_t v) {
525 return KMP_TEST_THEN_AND32(f, v);
529 template <>
struct flag_traits<kmp_uint64> {
530 typedef kmp_uint64 flag_t;
532 static inline flag_t tcr(flag_t f) {
return TCR_8(f); }
533 static inline flag_t test_then_add4(
volatile flag_t *f) {
534 return KMP_TEST_THEN_ADD4_64(RCAST(
volatile kmp_int64 *, f));
536 static inline flag_t test_then_or(
volatile flag_t *f, flag_t v) {
537 return KMP_TEST_THEN_OR64(f, v);
539 static inline flag_t test_then_and(
volatile flag_t *f, flag_t v) {
540 return KMP_TEST_THEN_AND64(f, v);
545 template <
typename FlagType>
547 typedef flag_traits<FlagType> traits_type;
555 kmp_basic_flag_native(
volatile FlagType *p)
557 kmp_basic_flag_native(
volatile FlagType *p, kmp_info_t *thr)
559 waiting_threads[0] = thr;
561 kmp_basic_flag_native(
volatile FlagType *p, FlagType c)
563 num_waiting_threads(0) {}
568 kmp_info_t *get_waiter(kmp_uint32 i) {
569 KMP_DEBUG_ASSERT(i < num_waiting_threads);
570 return waiting_threads[i];
575 kmp_uint32 get_num_waiters() {
return num_waiting_threads; }
581 void set_waiter(kmp_info_t *thr) {
582 waiting_threads[0] = thr;
583 num_waiting_threads = 1;
588 bool done_check() {
return traits_type::tcr(*(this->
get())) == checker; }
593 bool done_check_val(FlagType old_loc) {
return old_loc == checker; }
601 bool notdone_check() {
return traits_type::tcr(*(this->
get())) != checker; }
606 void internal_release() {
607 (void)traits_type::test_then_add4((
volatile FlagType *)this->
get());
614 FlagType set_sleeping() {
615 return traits_type::test_then_or((
volatile FlagType *)this->
get(),
616 KMP_BARRIER_SLEEP_STATE);
623 FlagType unset_sleeping() {
624 return traits_type::test_then_and((
volatile FlagType *)this->
get(),
625 ~KMP_BARRIER_SLEEP_STATE);
631 bool is_sleeping_val(FlagType old_loc) {
632 return old_loc & KMP_BARRIER_SLEEP_STATE;
637 bool is_sleeping() {
return is_sleeping_val(*(this->
get())); }
638 bool is_any_sleeping() {
return is_sleeping_val(*(this->
get())); }
639 kmp_uint8 *get_stolen() {
return NULL; }
640 enum barrier_type get_bt() {
return bs_last_barrier; }
643 template <
typename FlagType>
class kmp_basic_flag :
public kmp_flag<FlagType> {
644 typedef flag_traits<FlagType> traits_type;
652 kmp_basic_flag(std::atomic<FlagType> *p)
654 kmp_basic_flag(std::atomic<FlagType> *p, kmp_info_t *thr)
656 waiting_threads[0] = thr;
658 kmp_basic_flag(std::atomic<FlagType> *p, FlagType c)
660 num_waiting_threads(0) {}
665 kmp_info_t *get_waiter(kmp_uint32 i) {
666 KMP_DEBUG_ASSERT(i < num_waiting_threads);
667 return waiting_threads[i];
672 kmp_uint32 get_num_waiters() {
return num_waiting_threads; }
678 void set_waiter(kmp_info_t *thr) {
679 waiting_threads[0] = thr;
680 num_waiting_threads = 1;
685 bool done_check() {
return this->load() == checker; }
690 bool done_check_val(FlagType old_loc) {
return old_loc == checker; }
698 bool notdone_check() {
return this->load() != checker; }
703 void internal_release() { KMP_ATOMIC_ADD(this->
get(), 4); }
709 FlagType set_sleeping() {
710 return KMP_ATOMIC_OR(this->
get(), KMP_BARRIER_SLEEP_STATE);
717 FlagType unset_sleeping() {
718 return KMP_ATOMIC_AND(this->
get(), ~KMP_BARRIER_SLEEP_STATE);
724 bool is_sleeping_val(FlagType old_loc) {
725 return old_loc & KMP_BARRIER_SLEEP_STATE;
730 bool is_sleeping() {
return is_sleeping_val(this->load()); }
731 bool is_any_sleeping() {
return is_sleeping_val(this->load()); }
732 kmp_uint8 *get_stolen() {
return NULL; }
733 enum barrier_type get_bt() {
return bs_last_barrier; }
736 class kmp_flag_32 :
public kmp_basic_flag<kmp_uint32> {
738 kmp_flag_32(std::atomic<kmp_uint32> *p) : kmp_basic_flag<kmp_uint32>(p) {}
739 kmp_flag_32(std::atomic<kmp_uint32> *p, kmp_info_t *thr)
740 : kmp_basic_flag<kmp_uint32>(p, thr) {}
741 kmp_flag_32(std::atomic<kmp_uint32> *p, kmp_uint32 c)
742 : kmp_basic_flag<kmp_uint32>(p, c) {}
743 void suspend(
int th_gtid) { __kmp_suspend_32(th_gtid,
this); }
744 void resume(
int th_gtid) { __kmp_resume_32(th_gtid,
this); }
745 int execute_tasks(kmp_info_t *this_thr, kmp_int32 gtid,
int final_spin,
746 int *thread_finished USE_ITT_BUILD_ARG(
void *itt_sync_obj),
747 kmp_int32 is_constrained) {
748 return __kmp_execute_tasks_32(
749 this_thr, gtid,
this, final_spin,
750 thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained);
752 void wait(kmp_info_t *this_thr,
753 int final_spin USE_ITT_BUILD_ARG(
void *itt_sync_obj)) {
755 __kmp_wait_template<kmp_flag_32, TRUE>(
756 this_thr,
this USE_ITT_BUILD_ARG(itt_sync_obj));
758 __kmp_wait_template<kmp_flag_32, FALSE>(
759 this_thr,
this USE_ITT_BUILD_ARG(itt_sync_obj));
761 void release() { __kmp_release_template(
this); }
765 class kmp_flag_64 :
public kmp_basic_flag_native<kmp_uint64> {
767 kmp_flag_64(
volatile kmp_uint64 *p) : kmp_basic_flag_native<kmp_uint64>(p) {}
768 kmp_flag_64(
volatile kmp_uint64 *p, kmp_info_t *thr)
769 : kmp_basic_flag_native<kmp_uint64>(p, thr) {}
770 kmp_flag_64(
volatile kmp_uint64 *p, kmp_uint64 c)
771 : kmp_basic_flag_native<kmp_uint64>(p, c) {}
772 void suspend(
int th_gtid) { __kmp_suspend_64(th_gtid,
this); }
773 void resume(
int th_gtid) { __kmp_resume_64(th_gtid,
this); }
774 int execute_tasks(kmp_info_t *this_thr, kmp_int32 gtid,
int final_spin,
775 int *thread_finished USE_ITT_BUILD_ARG(
void *itt_sync_obj),
776 kmp_int32 is_constrained) {
777 return __kmp_execute_tasks_64(
778 this_thr, gtid,
this, final_spin,
779 thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained);
781 void wait(kmp_info_t *this_thr,
782 int final_spin USE_ITT_BUILD_ARG(
void *itt_sync_obj)) {
784 __kmp_wait_template<kmp_flag_64, TRUE>(
785 this_thr,
this USE_ITT_BUILD_ARG(itt_sync_obj));
787 __kmp_wait_template<kmp_flag_64, FALSE>(
788 this_thr,
this USE_ITT_BUILD_ARG(itt_sync_obj));
790 bool wait_cancellable_nosleep(kmp_info_t *this_thr,
792 USE_ITT_BUILD_ARG(
void *itt_sync_obj)) {
795 retval = __kmp_wait_template<kmp_flag_64, TRUE, true, false>(
796 this_thr,
this USE_ITT_BUILD_ARG(itt_sync_obj));
798 retval = __kmp_wait_template<kmp_flag_64, FALSE, true, false>(
799 this_thr,
this USE_ITT_BUILD_ARG(itt_sync_obj));
802 void release() { __kmp_release_template(
this); }
809 kmp_info_t *waiting_threads[1];
810 kmp_uint32 num_waiting_threads;
814 enum barrier_type bt;
815 kmp_info_t *this_thr;
821 unsigned char &byteref(
volatile kmp_uint64 *loc,
size_t offset) {
822 return (RCAST(
unsigned char *, CCAST(kmp_uint64 *, loc)))[offset];
826 kmp_flag_oncore(
volatile kmp_uint64 *p)
828 flag_switch(
false) {}
829 kmp_flag_oncore(
volatile kmp_uint64 *p, kmp_uint32 idx)
831 offset(idx), flag_switch(
false) {}
832 kmp_flag_oncore(
volatile kmp_uint64 *p, kmp_uint64 c, kmp_uint32 idx,
833 enum barrier_type bar_t,
834 kmp_info_t *thr USE_ITT_BUILD_ARG(
void *itt))
836 num_waiting_threads(0), offset(idx), flag_switch(
false), bt(bar_t),
837 this_thr(thr) USE_ITT_BUILD_ARG(itt_sync_obj(itt)) {}
838 kmp_info_t *get_waiter(kmp_uint32 i) {
839 KMP_DEBUG_ASSERT(i < num_waiting_threads);
840 return waiting_threads[i];
842 kmp_uint32 get_num_waiters() {
return num_waiting_threads; }
843 void set_waiter(kmp_info_t *thr) {
844 waiting_threads[0] = thr;
845 num_waiting_threads = 1;
847 bool done_check_val(kmp_uint64 old_loc) {
848 return byteref(&old_loc, offset) == checker;
850 bool done_check() {
return done_check_val(*
get()); }
851 bool notdone_check() {
853 if (this_thr->th.th_bar[bt].bb.wait_flag == KMP_BARRIER_SWITCH_TO_OWN_FLAG)
855 if (byteref(
get(), offset) != 1 && !flag_switch)
857 else if (flag_switch) {
858 this_thr->th.th_bar[bt].bb.wait_flag = KMP_BARRIER_SWITCHING;
859 kmp_flag_64 flag(&this_thr->th.th_bar[bt].bb.b_go,
860 (kmp_uint64)KMP_BARRIER_STATE_BUMP);
861 __kmp_wait_64(this_thr, &flag, TRUE USE_ITT_BUILD_ARG(itt_sync_obj));
865 void internal_release() {
867 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) {
868 byteref(
get(), offset) = 1;
871 byteref(&mask, offset) = 1;
872 KMP_TEST_THEN_OR64(
get(), mask);
875 kmp_uint64 set_sleeping() {
876 return KMP_TEST_THEN_OR64(
get(), KMP_BARRIER_SLEEP_STATE);
878 kmp_uint64 unset_sleeping() {
879 return KMP_TEST_THEN_AND64(
get(), ~KMP_BARRIER_SLEEP_STATE);
881 bool is_sleeping_val(kmp_uint64 old_loc) {
882 return old_loc & KMP_BARRIER_SLEEP_STATE;
884 bool is_sleeping() {
return is_sleeping_val(*
get()); }
885 bool is_any_sleeping() {
return is_sleeping_val(*
get()); }
886 void wait(kmp_info_t *this_thr,
int final_spin) {
888 __kmp_wait_template<kmp_flag_oncore, TRUE>(
889 this_thr,
this USE_ITT_BUILD_ARG(itt_sync_obj));
891 __kmp_wait_template<kmp_flag_oncore, FALSE>(
892 this_thr,
this USE_ITT_BUILD_ARG(itt_sync_obj));
894 void release() { __kmp_release_template(
this); }
895 void suspend(
int th_gtid) { __kmp_suspend_oncore(th_gtid,
this); }
896 void resume(
int th_gtid) { __kmp_resume_oncore(th_gtid,
this); }
897 int execute_tasks(kmp_info_t *this_thr, kmp_int32 gtid,
int final_spin,
898 int *thread_finished USE_ITT_BUILD_ARG(
void *itt_sync_obj),
899 kmp_int32 is_constrained) {
900 return __kmp_execute_tasks_oncore(
901 this_thr, gtid,
this, final_spin,
902 thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained);
904 kmp_uint8 *get_stolen() {
return NULL; }
905 enum barrier_type get_bt() {
return bt; }
911 static inline void __kmp_null_resume_wrapper(
int gtid,
volatile void *flag) {
915 switch (RCAST(kmp_flag_64 *, CCAST(
void *, flag))->get_type()) {
917 __kmp_resume_32(gtid, NULL);
920 __kmp_resume_64(gtid, NULL);
923 __kmp_resume_oncore(gtid, NULL);
932 #endif // KMP_WAIT_RELEASE_H
stats_state_e
the states which a thread can be in