LLVM OpenMP* Runtime Library
kmp_lock.cpp
1 /*
2  * kmp_lock.cpp -- lock-related functions
3  */
4 
5 //===----------------------------------------------------------------------===//
6 //
7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8 // See https://llvm.org/LICENSE.txt for license information.
9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include <stddef.h>
14 #include <atomic>
15 
16 #include "kmp.h"
17 #include "kmp_i18n.h"
18 #include "kmp_io.h"
19 #include "kmp_itt.h"
20 #include "kmp_lock.h"
21 #include "kmp_wait_release.h"
22 #include "kmp_wrapper_getpid.h"
23 
24 #include "tsan_annotations.h"
25 
26 #if KMP_USE_FUTEX
27 #include <sys/syscall.h>
28 #include <unistd.h>
29 // We should really include <futex.h>, but that causes compatibility problems on
30 // different Linux* OS distributions that either require that you include (or
31 // break when you try to include) <pci/types.h>. Since all we need is the two
32 // macros below (which are part of the kernel ABI, so can't change) we just
33 // define the constants here and don't include <futex.h>
34 #ifndef FUTEX_WAIT
35 #define FUTEX_WAIT 0
36 #endif
37 #ifndef FUTEX_WAKE
38 #define FUTEX_WAKE 1
39 #endif
40 #endif
41 
42 /* Implement spin locks for internal library use. */
43 /* The algorithm implemented is Lamport's bakery lock [1974]. */
44 
45 void __kmp_validate_locks(void) {
46  int i;
47  kmp_uint32 x, y;
48 
49  /* Check to make sure unsigned arithmetic does wraps properly */
50  x = ~((kmp_uint32)0) - 2;
51  y = x - 2;
52 
53  for (i = 0; i < 8; ++i, ++x, ++y) {
54  kmp_uint32 z = (x - y);
55  KMP_ASSERT(z == 2);
56  }
57 
58  KMP_ASSERT(offsetof(kmp_base_queuing_lock, tail_id) % 8 == 0);
59 }
60 
61 /* ------------------------------------------------------------------------ */
62 /* test and set locks */
63 
64 // For the non-nested locks, we can only assume that the first 4 bytes were
65 // allocated, since gcc only allocates 4 bytes for omp_lock_t, and the Intel
66 // compiler only allocates a 4 byte pointer on IA-32 architecture. On
67 // Windows* OS on Intel(R) 64, we can assume that all 8 bytes were allocated.
68 //
69 // gcc reserves >= 8 bytes for nested locks, so we can assume that the
70 // entire 8 bytes were allocated for nested locks on all 64-bit platforms.
71 
72 static kmp_int32 __kmp_get_tas_lock_owner(kmp_tas_lock_t *lck) {
73  return KMP_LOCK_STRIP(KMP_ATOMIC_LD_RLX(&lck->lk.poll)) - 1;
74 }
75 
76 static inline bool __kmp_is_tas_lock_nestable(kmp_tas_lock_t *lck) {
77  return lck->lk.depth_locked != -1;
78 }
79 
80 __forceinline static int
81 __kmp_acquire_tas_lock_timed_template(kmp_tas_lock_t *lck, kmp_int32 gtid) {
82  KMP_MB();
83 
84 #ifdef USE_LOCK_PROFILE
85  kmp_uint32 curr = KMP_LOCK_STRIP(lck->lk.poll);
86  if ((curr != 0) && (curr != gtid + 1))
87  __kmp_printf("LOCK CONTENTION: %p\n", lck);
88 /* else __kmp_printf( "." );*/
89 #endif /* USE_LOCK_PROFILE */
90 
91  kmp_int32 tas_free = KMP_LOCK_FREE(tas);
92  kmp_int32 tas_busy = KMP_LOCK_BUSY(gtid + 1, tas);
93 
94  if (KMP_ATOMIC_LD_RLX(&lck->lk.poll) == tas_free &&
95  __kmp_atomic_compare_store_acq(&lck->lk.poll, tas_free, tas_busy)) {
96  KMP_FSYNC_ACQUIRED(lck);
97  return KMP_LOCK_ACQUIRED_FIRST;
98  }
99 
100  kmp_uint32 spins;
101  KMP_FSYNC_PREPARE(lck);
102  KMP_INIT_YIELD(spins);
103  kmp_backoff_t backoff = __kmp_spin_backoff_params;
104  do {
105  __kmp_spin_backoff(&backoff);
106  KMP_YIELD_OVERSUB_ELSE_SPIN(spins);
107  } while (KMP_ATOMIC_LD_RLX(&lck->lk.poll) != tas_free ||
108  !__kmp_atomic_compare_store_acq(&lck->lk.poll, tas_free, tas_busy));
109  KMP_FSYNC_ACQUIRED(lck);
110  return KMP_LOCK_ACQUIRED_FIRST;
111 }
112 
113 int __kmp_acquire_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid) {
114  int retval = __kmp_acquire_tas_lock_timed_template(lck, gtid);
115  ANNOTATE_TAS_ACQUIRED(lck);
116  return retval;
117 }
118 
119 static int __kmp_acquire_tas_lock_with_checks(kmp_tas_lock_t *lck,
120  kmp_int32 gtid) {
121  char const *const func = "omp_set_lock";
122  if ((sizeof(kmp_tas_lock_t) <= OMP_LOCK_T_SIZE) &&
123  __kmp_is_tas_lock_nestable(lck)) {
124  KMP_FATAL(LockNestableUsedAsSimple, func);
125  }
126  if ((gtid >= 0) && (__kmp_get_tas_lock_owner(lck) == gtid)) {
127  KMP_FATAL(LockIsAlreadyOwned, func);
128  }
129  return __kmp_acquire_tas_lock(lck, gtid);
130 }
131 
132 int __kmp_test_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid) {
133  kmp_int32 tas_free = KMP_LOCK_FREE(tas);
134  kmp_int32 tas_busy = KMP_LOCK_BUSY(gtid + 1, tas);
135  if (KMP_ATOMIC_LD_RLX(&lck->lk.poll) == tas_free &&
136  __kmp_atomic_compare_store_acq(&lck->lk.poll, tas_free, tas_busy)) {
137  KMP_FSYNC_ACQUIRED(lck);
138  return TRUE;
139  }
140  return FALSE;
141 }
142 
143 static int __kmp_test_tas_lock_with_checks(kmp_tas_lock_t *lck,
144  kmp_int32 gtid) {
145  char const *const func = "omp_test_lock";
146  if ((sizeof(kmp_tas_lock_t) <= OMP_LOCK_T_SIZE) &&
147  __kmp_is_tas_lock_nestable(lck)) {
148  KMP_FATAL(LockNestableUsedAsSimple, func);
149  }
150  return __kmp_test_tas_lock(lck, gtid);
151 }
152 
153 int __kmp_release_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid) {
154  KMP_MB(); /* Flush all pending memory write invalidates. */
155 
156  KMP_FSYNC_RELEASING(lck);
157  ANNOTATE_TAS_RELEASED(lck);
158  KMP_ATOMIC_ST_REL(&lck->lk.poll, KMP_LOCK_FREE(tas));
159  KMP_MB(); /* Flush all pending memory write invalidates. */
160 
161  KMP_YIELD_OVERSUB();
162  return KMP_LOCK_RELEASED;
163 }
164 
165 static int __kmp_release_tas_lock_with_checks(kmp_tas_lock_t *lck,
166  kmp_int32 gtid) {
167  char const *const func = "omp_unset_lock";
168  KMP_MB(); /* in case another processor initialized lock */
169  if ((sizeof(kmp_tas_lock_t) <= OMP_LOCK_T_SIZE) &&
170  __kmp_is_tas_lock_nestable(lck)) {
171  KMP_FATAL(LockNestableUsedAsSimple, func);
172  }
173  if (__kmp_get_tas_lock_owner(lck) == -1) {
174  KMP_FATAL(LockUnsettingFree, func);
175  }
176  if ((gtid >= 0) && (__kmp_get_tas_lock_owner(lck) >= 0) &&
177  (__kmp_get_tas_lock_owner(lck) != gtid)) {
178  KMP_FATAL(LockUnsettingSetByAnother, func);
179  }
180  return __kmp_release_tas_lock(lck, gtid);
181 }
182 
183 void __kmp_init_tas_lock(kmp_tas_lock_t *lck) {
184  lck->lk.poll = KMP_LOCK_FREE(tas);
185 }
186 
187 void __kmp_destroy_tas_lock(kmp_tas_lock_t *lck) { lck->lk.poll = 0; }
188 
189 static void __kmp_destroy_tas_lock_with_checks(kmp_tas_lock_t *lck) {
190  char const *const func = "omp_destroy_lock";
191  if ((sizeof(kmp_tas_lock_t) <= OMP_LOCK_T_SIZE) &&
192  __kmp_is_tas_lock_nestable(lck)) {
193  KMP_FATAL(LockNestableUsedAsSimple, func);
194  }
195  if (__kmp_get_tas_lock_owner(lck) != -1) {
196  KMP_FATAL(LockStillOwned, func);
197  }
198  __kmp_destroy_tas_lock(lck);
199 }
200 
201 // nested test and set locks
202 
203 int __kmp_acquire_nested_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid) {
204  KMP_DEBUG_ASSERT(gtid >= 0);
205 
206  if (__kmp_get_tas_lock_owner(lck) == gtid) {
207  lck->lk.depth_locked += 1;
208  return KMP_LOCK_ACQUIRED_NEXT;
209  } else {
210  __kmp_acquire_tas_lock_timed_template(lck, gtid);
211  ANNOTATE_TAS_ACQUIRED(lck);
212  lck->lk.depth_locked = 1;
213  return KMP_LOCK_ACQUIRED_FIRST;
214  }
215 }
216 
217 static int __kmp_acquire_nested_tas_lock_with_checks(kmp_tas_lock_t *lck,
218  kmp_int32 gtid) {
219  char const *const func = "omp_set_nest_lock";
220  if (!__kmp_is_tas_lock_nestable(lck)) {
221  KMP_FATAL(LockSimpleUsedAsNestable, func);
222  }
223  return __kmp_acquire_nested_tas_lock(lck, gtid);
224 }
225 
226 int __kmp_test_nested_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid) {
227  int retval;
228 
229  KMP_DEBUG_ASSERT(gtid >= 0);
230 
231  if (__kmp_get_tas_lock_owner(lck) == gtid) {
232  retval = ++lck->lk.depth_locked;
233  } else if (!__kmp_test_tas_lock(lck, gtid)) {
234  retval = 0;
235  } else {
236  KMP_MB();
237  retval = lck->lk.depth_locked = 1;
238  }
239  return retval;
240 }
241 
242 static int __kmp_test_nested_tas_lock_with_checks(kmp_tas_lock_t *lck,
243  kmp_int32 gtid) {
244  char const *const func = "omp_test_nest_lock";
245  if (!__kmp_is_tas_lock_nestable(lck)) {
246  KMP_FATAL(LockSimpleUsedAsNestable, func);
247  }
248  return __kmp_test_nested_tas_lock(lck, gtid);
249 }
250 
251 int __kmp_release_nested_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid) {
252  KMP_DEBUG_ASSERT(gtid >= 0);
253 
254  KMP_MB();
255  if (--(lck->lk.depth_locked) == 0) {
256  __kmp_release_tas_lock(lck, gtid);
257  return KMP_LOCK_RELEASED;
258  }
259  return KMP_LOCK_STILL_HELD;
260 }
261 
262 static int __kmp_release_nested_tas_lock_with_checks(kmp_tas_lock_t *lck,
263  kmp_int32 gtid) {
264  char const *const func = "omp_unset_nest_lock";
265  KMP_MB(); /* in case another processor initialized lock */
266  if (!__kmp_is_tas_lock_nestable(lck)) {
267  KMP_FATAL(LockSimpleUsedAsNestable, func);
268  }
269  if (__kmp_get_tas_lock_owner(lck) == -1) {
270  KMP_FATAL(LockUnsettingFree, func);
271  }
272  if (__kmp_get_tas_lock_owner(lck) != gtid) {
273  KMP_FATAL(LockUnsettingSetByAnother, func);
274  }
275  return __kmp_release_nested_tas_lock(lck, gtid);
276 }
277 
278 void __kmp_init_nested_tas_lock(kmp_tas_lock_t *lck) {
279  __kmp_init_tas_lock(lck);
280  lck->lk.depth_locked = 0; // >= 0 for nestable locks, -1 for simple locks
281 }
282 
283 void __kmp_destroy_nested_tas_lock(kmp_tas_lock_t *lck) {
284  __kmp_destroy_tas_lock(lck);
285  lck->lk.depth_locked = 0;
286 }
287 
288 static void __kmp_destroy_nested_tas_lock_with_checks(kmp_tas_lock_t *lck) {
289  char const *const func = "omp_destroy_nest_lock";
290  if (!__kmp_is_tas_lock_nestable(lck)) {
291  KMP_FATAL(LockSimpleUsedAsNestable, func);
292  }
293  if (__kmp_get_tas_lock_owner(lck) != -1) {
294  KMP_FATAL(LockStillOwned, func);
295  }
296  __kmp_destroy_nested_tas_lock(lck);
297 }
298 
299 #if KMP_USE_FUTEX
300 
301 /* ------------------------------------------------------------------------ */
302 /* futex locks */
303 
304 // futex locks are really just test and set locks, with a different method
305 // of handling contention. They take the same amount of space as test and
306 // set locks, and are allocated the same way (i.e. use the area allocated by
307 // the compiler for non-nested locks / allocate nested locks on the heap).
308 
309 static kmp_int32 __kmp_get_futex_lock_owner(kmp_futex_lock_t *lck) {
310  return KMP_LOCK_STRIP((TCR_4(lck->lk.poll) >> 1)) - 1;
311 }
312 
313 static inline bool __kmp_is_futex_lock_nestable(kmp_futex_lock_t *lck) {
314  return lck->lk.depth_locked != -1;
315 }
316 
317 __forceinline static int
318 __kmp_acquire_futex_lock_timed_template(kmp_futex_lock_t *lck, kmp_int32 gtid) {
319  kmp_int32 gtid_code = (gtid + 1) << 1;
320 
321  KMP_MB();
322 
323 #ifdef USE_LOCK_PROFILE
324  kmp_uint32 curr = KMP_LOCK_STRIP(TCR_4(lck->lk.poll));
325  if ((curr != 0) && (curr != gtid_code))
326  __kmp_printf("LOCK CONTENTION: %p\n", lck);
327 /* else __kmp_printf( "." );*/
328 #endif /* USE_LOCK_PROFILE */
329 
330  KMP_FSYNC_PREPARE(lck);
331  KA_TRACE(1000, ("__kmp_acquire_futex_lock: lck:%p(0x%x), T#%d entering\n",
332  lck, lck->lk.poll, gtid));
333 
334  kmp_int32 poll_val;
335 
336  while ((poll_val = KMP_COMPARE_AND_STORE_RET32(
337  &(lck->lk.poll), KMP_LOCK_FREE(futex),
338  KMP_LOCK_BUSY(gtid_code, futex))) != KMP_LOCK_FREE(futex)) {
339 
340  kmp_int32 cond = KMP_LOCK_STRIP(poll_val) & 1;
341  KA_TRACE(
342  1000,
343  ("__kmp_acquire_futex_lock: lck:%p, T#%d poll_val = 0x%x cond = 0x%x\n",
344  lck, gtid, poll_val, cond));
345 
346  // NOTE: if you try to use the following condition for this branch
347  //
348  // if ( poll_val & 1 == 0 )
349  //
350  // Then the 12.0 compiler has a bug where the following block will
351  // always be skipped, regardless of the value of the LSB of poll_val.
352  if (!cond) {
353  // Try to set the lsb in the poll to indicate to the owner
354  // thread that they need to wake this thread up.
355  if (!KMP_COMPARE_AND_STORE_REL32(&(lck->lk.poll), poll_val,
356  poll_val | KMP_LOCK_BUSY(1, futex))) {
357  KA_TRACE(
358  1000,
359  ("__kmp_acquire_futex_lock: lck:%p(0x%x), T#%d can't set bit 0\n",
360  lck, lck->lk.poll, gtid));
361  continue;
362  }
363  poll_val |= KMP_LOCK_BUSY(1, futex);
364 
365  KA_TRACE(1000,
366  ("__kmp_acquire_futex_lock: lck:%p(0x%x), T#%d bit 0 set\n", lck,
367  lck->lk.poll, gtid));
368  }
369 
370  KA_TRACE(
371  1000,
372  ("__kmp_acquire_futex_lock: lck:%p, T#%d before futex_wait(0x%x)\n",
373  lck, gtid, poll_val));
374 
375  kmp_int32 rc;
376  if ((rc = syscall(__NR_futex, &(lck->lk.poll), FUTEX_WAIT, poll_val, NULL,
377  NULL, 0)) != 0) {
378  KA_TRACE(1000, ("__kmp_acquire_futex_lock: lck:%p, T#%d futex_wait(0x%x) "
379  "failed (rc=%d errno=%d)\n",
380  lck, gtid, poll_val, rc, errno));
381  continue;
382  }
383 
384  KA_TRACE(1000,
385  ("__kmp_acquire_futex_lock: lck:%p, T#%d after futex_wait(0x%x)\n",
386  lck, gtid, poll_val));
387  // This thread has now done a successful futex wait call and was entered on
388  // the OS futex queue. We must now perform a futex wake call when releasing
389  // the lock, as we have no idea how many other threads are in the queue.
390  gtid_code |= 1;
391  }
392 
393  KMP_FSYNC_ACQUIRED(lck);
394  KA_TRACE(1000, ("__kmp_acquire_futex_lock: lck:%p(0x%x), T#%d exiting\n", lck,
395  lck->lk.poll, gtid));
396  return KMP_LOCK_ACQUIRED_FIRST;
397 }
398 
399 int __kmp_acquire_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid) {
400  int retval = __kmp_acquire_futex_lock_timed_template(lck, gtid);
401  ANNOTATE_FUTEX_ACQUIRED(lck);
402  return retval;
403 }
404 
405 static int __kmp_acquire_futex_lock_with_checks(kmp_futex_lock_t *lck,
406  kmp_int32 gtid) {
407  char const *const func = "omp_set_lock";
408  if ((sizeof(kmp_futex_lock_t) <= OMP_LOCK_T_SIZE) &&
409  __kmp_is_futex_lock_nestable(lck)) {
410  KMP_FATAL(LockNestableUsedAsSimple, func);
411  }
412  if ((gtid >= 0) && (__kmp_get_futex_lock_owner(lck) == gtid)) {
413  KMP_FATAL(LockIsAlreadyOwned, func);
414  }
415  return __kmp_acquire_futex_lock(lck, gtid);
416 }
417 
418 int __kmp_test_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid) {
419  if (KMP_COMPARE_AND_STORE_ACQ32(&(lck->lk.poll), KMP_LOCK_FREE(futex),
420  KMP_LOCK_BUSY((gtid + 1) << 1, futex))) {
421  KMP_FSYNC_ACQUIRED(lck);
422  return TRUE;
423  }
424  return FALSE;
425 }
426 
427 static int __kmp_test_futex_lock_with_checks(kmp_futex_lock_t *lck,
428  kmp_int32 gtid) {
429  char const *const func = "omp_test_lock";
430  if ((sizeof(kmp_futex_lock_t) <= OMP_LOCK_T_SIZE) &&
431  __kmp_is_futex_lock_nestable(lck)) {
432  KMP_FATAL(LockNestableUsedAsSimple, func);
433  }
434  return __kmp_test_futex_lock(lck, gtid);
435 }
436 
437 int __kmp_release_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid) {
438  KMP_MB(); /* Flush all pending memory write invalidates. */
439 
440  KA_TRACE(1000, ("__kmp_release_futex_lock: lck:%p(0x%x), T#%d entering\n",
441  lck, lck->lk.poll, gtid));
442 
443  KMP_FSYNC_RELEASING(lck);
444  ANNOTATE_FUTEX_RELEASED(lck);
445 
446  kmp_int32 poll_val = KMP_XCHG_FIXED32(&(lck->lk.poll), KMP_LOCK_FREE(futex));
447 
448  KA_TRACE(1000,
449  ("__kmp_release_futex_lock: lck:%p, T#%d released poll_val = 0x%x\n",
450  lck, gtid, poll_val));
451 
452  if (KMP_LOCK_STRIP(poll_val) & 1) {
453  KA_TRACE(1000,
454  ("__kmp_release_futex_lock: lck:%p, T#%d futex_wake 1 thread\n",
455  lck, gtid));
456  syscall(__NR_futex, &(lck->lk.poll), FUTEX_WAKE, KMP_LOCK_BUSY(1, futex),
457  NULL, NULL, 0);
458  }
459 
460  KMP_MB(); /* Flush all pending memory write invalidates. */
461 
462  KA_TRACE(1000, ("__kmp_release_futex_lock: lck:%p(0x%x), T#%d exiting\n", lck,
463  lck->lk.poll, gtid));
464 
465  KMP_YIELD_OVERSUB();
466  return KMP_LOCK_RELEASED;
467 }
468 
469 static int __kmp_release_futex_lock_with_checks(kmp_futex_lock_t *lck,
470  kmp_int32 gtid) {
471  char const *const func = "omp_unset_lock";
472  KMP_MB(); /* in case another processor initialized lock */
473  if ((sizeof(kmp_futex_lock_t) <= OMP_LOCK_T_SIZE) &&
474  __kmp_is_futex_lock_nestable(lck)) {
475  KMP_FATAL(LockNestableUsedAsSimple, func);
476  }
477  if (__kmp_get_futex_lock_owner(lck) == -1) {
478  KMP_FATAL(LockUnsettingFree, func);
479  }
480  if ((gtid >= 0) && (__kmp_get_futex_lock_owner(lck) >= 0) &&
481  (__kmp_get_futex_lock_owner(lck) != gtid)) {
482  KMP_FATAL(LockUnsettingSetByAnother, func);
483  }
484  return __kmp_release_futex_lock(lck, gtid);
485 }
486 
487 void __kmp_init_futex_lock(kmp_futex_lock_t *lck) {
488  TCW_4(lck->lk.poll, KMP_LOCK_FREE(futex));
489 }
490 
491 void __kmp_destroy_futex_lock(kmp_futex_lock_t *lck) { lck->lk.poll = 0; }
492 
493 static void __kmp_destroy_futex_lock_with_checks(kmp_futex_lock_t *lck) {
494  char const *const func = "omp_destroy_lock";
495  if ((sizeof(kmp_futex_lock_t) <= OMP_LOCK_T_SIZE) &&
496  __kmp_is_futex_lock_nestable(lck)) {
497  KMP_FATAL(LockNestableUsedAsSimple, func);
498  }
499  if (__kmp_get_futex_lock_owner(lck) != -1) {
500  KMP_FATAL(LockStillOwned, func);
501  }
502  __kmp_destroy_futex_lock(lck);
503 }
504 
505 // nested futex locks
506 
507 int __kmp_acquire_nested_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid) {
508  KMP_DEBUG_ASSERT(gtid >= 0);
509 
510  if (__kmp_get_futex_lock_owner(lck) == gtid) {
511  lck->lk.depth_locked += 1;
512  return KMP_LOCK_ACQUIRED_NEXT;
513  } else {
514  __kmp_acquire_futex_lock_timed_template(lck, gtid);
515  ANNOTATE_FUTEX_ACQUIRED(lck);
516  lck->lk.depth_locked = 1;
517  return KMP_LOCK_ACQUIRED_FIRST;
518  }
519 }
520 
521 static int __kmp_acquire_nested_futex_lock_with_checks(kmp_futex_lock_t *lck,
522  kmp_int32 gtid) {
523  char const *const func = "omp_set_nest_lock";
524  if (!__kmp_is_futex_lock_nestable(lck)) {
525  KMP_FATAL(LockSimpleUsedAsNestable, func);
526  }
527  return __kmp_acquire_nested_futex_lock(lck, gtid);
528 }
529 
530 int __kmp_test_nested_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid) {
531  int retval;
532 
533  KMP_DEBUG_ASSERT(gtid >= 0);
534 
535  if (__kmp_get_futex_lock_owner(lck) == gtid) {
536  retval = ++lck->lk.depth_locked;
537  } else if (!__kmp_test_futex_lock(lck, gtid)) {
538  retval = 0;
539  } else {
540  KMP_MB();
541  retval = lck->lk.depth_locked = 1;
542  }
543  return retval;
544 }
545 
546 static int __kmp_test_nested_futex_lock_with_checks(kmp_futex_lock_t *lck,
547  kmp_int32 gtid) {
548  char const *const func = "omp_test_nest_lock";
549  if (!__kmp_is_futex_lock_nestable(lck)) {
550  KMP_FATAL(LockSimpleUsedAsNestable, func);
551  }
552  return __kmp_test_nested_futex_lock(lck, gtid);
553 }
554 
555 int __kmp_release_nested_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid) {
556  KMP_DEBUG_ASSERT(gtid >= 0);
557 
558  KMP_MB();
559  if (--(lck->lk.depth_locked) == 0) {
560  __kmp_release_futex_lock(lck, gtid);
561  return KMP_LOCK_RELEASED;
562  }
563  return KMP_LOCK_STILL_HELD;
564 }
565 
566 static int __kmp_release_nested_futex_lock_with_checks(kmp_futex_lock_t *lck,
567  kmp_int32 gtid) {
568  char const *const func = "omp_unset_nest_lock";
569  KMP_MB(); /* in case another processor initialized lock */
570  if (!__kmp_is_futex_lock_nestable(lck)) {
571  KMP_FATAL(LockSimpleUsedAsNestable, func);
572  }
573  if (__kmp_get_futex_lock_owner(lck) == -1) {
574  KMP_FATAL(LockUnsettingFree, func);
575  }
576  if (__kmp_get_futex_lock_owner(lck) != gtid) {
577  KMP_FATAL(LockUnsettingSetByAnother, func);
578  }
579  return __kmp_release_nested_futex_lock(lck, gtid);
580 }
581 
582 void __kmp_init_nested_futex_lock(kmp_futex_lock_t *lck) {
583  __kmp_init_futex_lock(lck);
584  lck->lk.depth_locked = 0; // >= 0 for nestable locks, -1 for simple locks
585 }
586 
587 void __kmp_destroy_nested_futex_lock(kmp_futex_lock_t *lck) {
588  __kmp_destroy_futex_lock(lck);
589  lck->lk.depth_locked = 0;
590 }
591 
592 static void __kmp_destroy_nested_futex_lock_with_checks(kmp_futex_lock_t *lck) {
593  char const *const func = "omp_destroy_nest_lock";
594  if (!__kmp_is_futex_lock_nestable(lck)) {
595  KMP_FATAL(LockSimpleUsedAsNestable, func);
596  }
597  if (__kmp_get_futex_lock_owner(lck) != -1) {
598  KMP_FATAL(LockStillOwned, func);
599  }
600  __kmp_destroy_nested_futex_lock(lck);
601 }
602 
603 #endif // KMP_USE_FUTEX
604 
605 /* ------------------------------------------------------------------------ */
606 /* ticket (bakery) locks */
607 
608 static kmp_int32 __kmp_get_ticket_lock_owner(kmp_ticket_lock_t *lck) {
609  return std::atomic_load_explicit(&lck->lk.owner_id,
610  std::memory_order_relaxed) -
611  1;
612 }
613 
614 static inline bool __kmp_is_ticket_lock_nestable(kmp_ticket_lock_t *lck) {
615  return std::atomic_load_explicit(&lck->lk.depth_locked,
616  std::memory_order_relaxed) != -1;
617 }
618 
619 static kmp_uint32 __kmp_bakery_check(void *now_serving, kmp_uint32 my_ticket) {
620  return std::atomic_load_explicit((std::atomic<unsigned> *)now_serving,
621  std::memory_order_acquire) == my_ticket;
622 }
623 
624 __forceinline static int
625 __kmp_acquire_ticket_lock_timed_template(kmp_ticket_lock_t *lck,
626  kmp_int32 gtid) {
627  kmp_uint32 my_ticket = std::atomic_fetch_add_explicit(
628  &lck->lk.next_ticket, 1U, std::memory_order_relaxed);
629 
630 #ifdef USE_LOCK_PROFILE
631  if (std::atomic_load_explicit(&lck->lk.now_serving,
632  std::memory_order_relaxed) != my_ticket)
633  __kmp_printf("LOCK CONTENTION: %p\n", lck);
634 /* else __kmp_printf( "." );*/
635 #endif /* USE_LOCK_PROFILE */
636 
637  if (std::atomic_load_explicit(&lck->lk.now_serving,
638  std::memory_order_acquire) == my_ticket) {
639  return KMP_LOCK_ACQUIRED_FIRST;
640  }
641  KMP_WAIT_PTR(&lck->lk.now_serving, my_ticket, __kmp_bakery_check, lck);
642  return KMP_LOCK_ACQUIRED_FIRST;
643 }
644 
645 int __kmp_acquire_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid) {
646  int retval = __kmp_acquire_ticket_lock_timed_template(lck, gtid);
647  ANNOTATE_TICKET_ACQUIRED(lck);
648  return retval;
649 }
650 
651 static int __kmp_acquire_ticket_lock_with_checks(kmp_ticket_lock_t *lck,
652  kmp_int32 gtid) {
653  char const *const func = "omp_set_lock";
654 
655  if (!std::atomic_load_explicit(&lck->lk.initialized,
656  std::memory_order_relaxed)) {
657  KMP_FATAL(LockIsUninitialized, func);
658  }
659  if (lck->lk.self != lck) {
660  KMP_FATAL(LockIsUninitialized, func);
661  }
662  if (__kmp_is_ticket_lock_nestable(lck)) {
663  KMP_FATAL(LockNestableUsedAsSimple, func);
664  }
665  if ((gtid >= 0) && (__kmp_get_ticket_lock_owner(lck) == gtid)) {
666  KMP_FATAL(LockIsAlreadyOwned, func);
667  }
668 
669  __kmp_acquire_ticket_lock(lck, gtid);
670 
671  std::atomic_store_explicit(&lck->lk.owner_id, gtid + 1,
672  std::memory_order_relaxed);
673  return KMP_LOCK_ACQUIRED_FIRST;
674 }
675 
676 int __kmp_test_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid) {
677  kmp_uint32 my_ticket = std::atomic_load_explicit(&lck->lk.next_ticket,
678  std::memory_order_relaxed);
679 
680  if (std::atomic_load_explicit(&lck->lk.now_serving,
681  std::memory_order_relaxed) == my_ticket) {
682  kmp_uint32 next_ticket = my_ticket + 1;
683  if (std::atomic_compare_exchange_strong_explicit(
684  &lck->lk.next_ticket, &my_ticket, next_ticket,
685  std::memory_order_acquire, std::memory_order_acquire)) {
686  return TRUE;
687  }
688  }
689  return FALSE;
690 }
691 
692 static int __kmp_test_ticket_lock_with_checks(kmp_ticket_lock_t *lck,
693  kmp_int32 gtid) {
694  char const *const func = "omp_test_lock";
695 
696  if (!std::atomic_load_explicit(&lck->lk.initialized,
697  std::memory_order_relaxed)) {
698  KMP_FATAL(LockIsUninitialized, func);
699  }
700  if (lck->lk.self != lck) {
701  KMP_FATAL(LockIsUninitialized, func);
702  }
703  if (__kmp_is_ticket_lock_nestable(lck)) {
704  KMP_FATAL(LockNestableUsedAsSimple, func);
705  }
706 
707  int retval = __kmp_test_ticket_lock(lck, gtid);
708 
709  if (retval) {
710  std::atomic_store_explicit(&lck->lk.owner_id, gtid + 1,
711  std::memory_order_relaxed);
712  }
713  return retval;
714 }
715 
716 int __kmp_release_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid) {
717  kmp_uint32 distance = std::atomic_load_explicit(&lck->lk.next_ticket,
718  std::memory_order_relaxed) -
719  std::atomic_load_explicit(&lck->lk.now_serving,
720  std::memory_order_relaxed);
721 
722  ANNOTATE_TICKET_RELEASED(lck);
723  std::atomic_fetch_add_explicit(&lck->lk.now_serving, 1U,
724  std::memory_order_release);
725 
726  KMP_YIELD(distance >
727  (kmp_uint32)(__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc));
728  return KMP_LOCK_RELEASED;
729 }
730 
731 static int __kmp_release_ticket_lock_with_checks(kmp_ticket_lock_t *lck,
732  kmp_int32 gtid) {
733  char const *const func = "omp_unset_lock";
734 
735  if (!std::atomic_load_explicit(&lck->lk.initialized,
736  std::memory_order_relaxed)) {
737  KMP_FATAL(LockIsUninitialized, func);
738  }
739  if (lck->lk.self != lck) {
740  KMP_FATAL(LockIsUninitialized, func);
741  }
742  if (__kmp_is_ticket_lock_nestable(lck)) {
743  KMP_FATAL(LockNestableUsedAsSimple, func);
744  }
745  if (__kmp_get_ticket_lock_owner(lck) == -1) {
746  KMP_FATAL(LockUnsettingFree, func);
747  }
748  if ((gtid >= 0) && (__kmp_get_ticket_lock_owner(lck) >= 0) &&
749  (__kmp_get_ticket_lock_owner(lck) != gtid)) {
750  KMP_FATAL(LockUnsettingSetByAnother, func);
751  }
752  std::atomic_store_explicit(&lck->lk.owner_id, 0, std::memory_order_relaxed);
753  return __kmp_release_ticket_lock(lck, gtid);
754 }
755 
756 void __kmp_init_ticket_lock(kmp_ticket_lock_t *lck) {
757  lck->lk.location = NULL;
758  lck->lk.self = lck;
759  std::atomic_store_explicit(&lck->lk.next_ticket, 0U,
760  std::memory_order_relaxed);
761  std::atomic_store_explicit(&lck->lk.now_serving, 0U,
762  std::memory_order_relaxed);
763  std::atomic_store_explicit(
764  &lck->lk.owner_id, 0,
765  std::memory_order_relaxed); // no thread owns the lock.
766  std::atomic_store_explicit(
767  &lck->lk.depth_locked, -1,
768  std::memory_order_relaxed); // -1 => not a nested lock.
769  std::atomic_store_explicit(&lck->lk.initialized, true,
770  std::memory_order_release);
771 }
772 
773 void __kmp_destroy_ticket_lock(kmp_ticket_lock_t *lck) {
774  std::atomic_store_explicit(&lck->lk.initialized, false,
775  std::memory_order_release);
776  lck->lk.self = NULL;
777  lck->lk.location = NULL;
778  std::atomic_store_explicit(&lck->lk.next_ticket, 0U,
779  std::memory_order_relaxed);
780  std::atomic_store_explicit(&lck->lk.now_serving, 0U,
781  std::memory_order_relaxed);
782  std::atomic_store_explicit(&lck->lk.owner_id, 0, std::memory_order_relaxed);
783  std::atomic_store_explicit(&lck->lk.depth_locked, -1,
784  std::memory_order_relaxed);
785 }
786 
787 static void __kmp_destroy_ticket_lock_with_checks(kmp_ticket_lock_t *lck) {
788  char const *const func = "omp_destroy_lock";
789 
790  if (!std::atomic_load_explicit(&lck->lk.initialized,
791  std::memory_order_relaxed)) {
792  KMP_FATAL(LockIsUninitialized, func);
793  }
794  if (lck->lk.self != lck) {
795  KMP_FATAL(LockIsUninitialized, func);
796  }
797  if (__kmp_is_ticket_lock_nestable(lck)) {
798  KMP_FATAL(LockNestableUsedAsSimple, func);
799  }
800  if (__kmp_get_ticket_lock_owner(lck) != -1) {
801  KMP_FATAL(LockStillOwned, func);
802  }
803  __kmp_destroy_ticket_lock(lck);
804 }
805 
806 // nested ticket locks
807 
808 int __kmp_acquire_nested_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid) {
809  KMP_DEBUG_ASSERT(gtid >= 0);
810 
811  if (__kmp_get_ticket_lock_owner(lck) == gtid) {
812  std::atomic_fetch_add_explicit(&lck->lk.depth_locked, 1,
813  std::memory_order_relaxed);
814  return KMP_LOCK_ACQUIRED_NEXT;
815  } else {
816  __kmp_acquire_ticket_lock_timed_template(lck, gtid);
817  ANNOTATE_TICKET_ACQUIRED(lck);
818  std::atomic_store_explicit(&lck->lk.depth_locked, 1,
819  std::memory_order_relaxed);
820  std::atomic_store_explicit(&lck->lk.owner_id, gtid + 1,
821  std::memory_order_relaxed);
822  return KMP_LOCK_ACQUIRED_FIRST;
823  }
824 }
825 
826 static int __kmp_acquire_nested_ticket_lock_with_checks(kmp_ticket_lock_t *lck,
827  kmp_int32 gtid) {
828  char const *const func = "omp_set_nest_lock";
829 
830  if (!std::atomic_load_explicit(&lck->lk.initialized,
831  std::memory_order_relaxed)) {
832  KMP_FATAL(LockIsUninitialized, func);
833  }
834  if (lck->lk.self != lck) {
835  KMP_FATAL(LockIsUninitialized, func);
836  }
837  if (!__kmp_is_ticket_lock_nestable(lck)) {
838  KMP_FATAL(LockSimpleUsedAsNestable, func);
839  }
840  return __kmp_acquire_nested_ticket_lock(lck, gtid);
841 }
842 
843 int __kmp_test_nested_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid) {
844  int retval;
845 
846  KMP_DEBUG_ASSERT(gtid >= 0);
847 
848  if (__kmp_get_ticket_lock_owner(lck) == gtid) {
849  retval = std::atomic_fetch_add_explicit(&lck->lk.depth_locked, 1,
850  std::memory_order_relaxed) +
851  1;
852  } else if (!__kmp_test_ticket_lock(lck, gtid)) {
853  retval = 0;
854  } else {
855  std::atomic_store_explicit(&lck->lk.depth_locked, 1,
856  std::memory_order_relaxed);
857  std::atomic_store_explicit(&lck->lk.owner_id, gtid + 1,
858  std::memory_order_relaxed);
859  retval = 1;
860  }
861  return retval;
862 }
863 
864 static int __kmp_test_nested_ticket_lock_with_checks(kmp_ticket_lock_t *lck,
865  kmp_int32 gtid) {
866  char const *const func = "omp_test_nest_lock";
867 
868  if (!std::atomic_load_explicit(&lck->lk.initialized,
869  std::memory_order_relaxed)) {
870  KMP_FATAL(LockIsUninitialized, func);
871  }
872  if (lck->lk.self != lck) {
873  KMP_FATAL(LockIsUninitialized, func);
874  }
875  if (!__kmp_is_ticket_lock_nestable(lck)) {
876  KMP_FATAL(LockSimpleUsedAsNestable, func);
877  }
878  return __kmp_test_nested_ticket_lock(lck, gtid);
879 }
880 
881 int __kmp_release_nested_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid) {
882  KMP_DEBUG_ASSERT(gtid >= 0);
883 
884  if ((std::atomic_fetch_add_explicit(&lck->lk.depth_locked, -1,
885  std::memory_order_relaxed) -
886  1) == 0) {
887  std::atomic_store_explicit(&lck->lk.owner_id, 0, std::memory_order_relaxed);
888  __kmp_release_ticket_lock(lck, gtid);
889  return KMP_LOCK_RELEASED;
890  }
891  return KMP_LOCK_STILL_HELD;
892 }
893 
894 static int __kmp_release_nested_ticket_lock_with_checks(kmp_ticket_lock_t *lck,
895  kmp_int32 gtid) {
896  char const *const func = "omp_unset_nest_lock";
897 
898  if (!std::atomic_load_explicit(&lck->lk.initialized,
899  std::memory_order_relaxed)) {
900  KMP_FATAL(LockIsUninitialized, func);
901  }
902  if (lck->lk.self != lck) {
903  KMP_FATAL(LockIsUninitialized, func);
904  }
905  if (!__kmp_is_ticket_lock_nestable(lck)) {
906  KMP_FATAL(LockSimpleUsedAsNestable, func);
907  }
908  if (__kmp_get_ticket_lock_owner(lck) == -1) {
909  KMP_FATAL(LockUnsettingFree, func);
910  }
911  if (__kmp_get_ticket_lock_owner(lck) != gtid) {
912  KMP_FATAL(LockUnsettingSetByAnother, func);
913  }
914  return __kmp_release_nested_ticket_lock(lck, gtid);
915 }
916 
917 void __kmp_init_nested_ticket_lock(kmp_ticket_lock_t *lck) {
918  __kmp_init_ticket_lock(lck);
919  std::atomic_store_explicit(&lck->lk.depth_locked, 0,
920  std::memory_order_relaxed);
921  // >= 0 for nestable locks, -1 for simple locks
922 }
923 
924 void __kmp_destroy_nested_ticket_lock(kmp_ticket_lock_t *lck) {
925  __kmp_destroy_ticket_lock(lck);
926  std::atomic_store_explicit(&lck->lk.depth_locked, 0,
927  std::memory_order_relaxed);
928 }
929 
930 static void
931 __kmp_destroy_nested_ticket_lock_with_checks(kmp_ticket_lock_t *lck) {
932  char const *const func = "omp_destroy_nest_lock";
933 
934  if (!std::atomic_load_explicit(&lck->lk.initialized,
935  std::memory_order_relaxed)) {
936  KMP_FATAL(LockIsUninitialized, func);
937  }
938  if (lck->lk.self != lck) {
939  KMP_FATAL(LockIsUninitialized, func);
940  }
941  if (!__kmp_is_ticket_lock_nestable(lck)) {
942  KMP_FATAL(LockSimpleUsedAsNestable, func);
943  }
944  if (__kmp_get_ticket_lock_owner(lck) != -1) {
945  KMP_FATAL(LockStillOwned, func);
946  }
947  __kmp_destroy_nested_ticket_lock(lck);
948 }
949 
950 // access functions to fields which don't exist for all lock kinds.
951 
952 static const ident_t *__kmp_get_ticket_lock_location(kmp_ticket_lock_t *lck) {
953  return lck->lk.location;
954 }
955 
956 static void __kmp_set_ticket_lock_location(kmp_ticket_lock_t *lck,
957  const ident_t *loc) {
958  lck->lk.location = loc;
959 }
960 
961 static kmp_lock_flags_t __kmp_get_ticket_lock_flags(kmp_ticket_lock_t *lck) {
962  return lck->lk.flags;
963 }
964 
965 static void __kmp_set_ticket_lock_flags(kmp_ticket_lock_t *lck,
966  kmp_lock_flags_t flags) {
967  lck->lk.flags = flags;
968 }
969 
970 /* ------------------------------------------------------------------------ */
971 /* queuing locks */
972 
973 /* First the states
974  (head,tail) = 0, 0 means lock is unheld, nobody on queue
975  UINT_MAX or -1, 0 means lock is held, nobody on queue
976  h, h means lock held or about to transition,
977  1 element on queue
978  h, t h <> t, means lock is held or about to
979  transition, >1 elements on queue
980 
981  Now the transitions
982  Acquire(0,0) = -1 ,0
983  Release(0,0) = Error
984  Acquire(-1,0) = h ,h h > 0
985  Release(-1,0) = 0 ,0
986  Acquire(h,h) = h ,t h > 0, t > 0, h <> t
987  Release(h,h) = -1 ,0 h > 0
988  Acquire(h,t) = h ,t' h > 0, t > 0, t' > 0, h <> t, h <> t', t <> t'
989  Release(h,t) = h',t h > 0, t > 0, h <> t, h <> h', h' maybe = t
990 
991  And pictorially
992 
993  +-----+
994  | 0, 0|------- release -------> Error
995  +-----+
996  | ^
997  acquire| |release
998  | |
999  | |
1000  v |
1001  +-----+
1002  |-1, 0|
1003  +-----+
1004  | ^
1005  acquire| |release
1006  | |
1007  | |
1008  v |
1009  +-----+
1010  | h, h|
1011  +-----+
1012  | ^
1013  acquire| |release
1014  | |
1015  | |
1016  v |
1017  +-----+
1018  | h, t|----- acquire, release loopback ---+
1019  +-----+ |
1020  ^ |
1021  | |
1022  +------------------------------------+
1023  */
1024 
1025 #ifdef DEBUG_QUEUING_LOCKS
1026 
1027 /* Stuff for circular trace buffer */
1028 #define TRACE_BUF_ELE 1024
1029 static char traces[TRACE_BUF_ELE][128] = {0};
1030 static int tc = 0;
1031 #define TRACE_LOCK(X, Y) \
1032  KMP_SNPRINTF(traces[tc++ % TRACE_BUF_ELE], 128, "t%d at %s\n", X, Y);
1033 #define TRACE_LOCK_T(X, Y, Z) \
1034  KMP_SNPRINTF(traces[tc++ % TRACE_BUF_ELE], 128, "t%d at %s%d\n", X, Y, Z);
1035 #define TRACE_LOCK_HT(X, Y, Z, Q) \
1036  KMP_SNPRINTF(traces[tc++ % TRACE_BUF_ELE], 128, "t%d at %s %d,%d\n", X, Y, \
1037  Z, Q);
1038 
1039 static void __kmp_dump_queuing_lock(kmp_info_t *this_thr, kmp_int32 gtid,
1040  kmp_queuing_lock_t *lck, kmp_int32 head_id,
1041  kmp_int32 tail_id) {
1042  kmp_int32 t, i;
1043 
1044  __kmp_printf_no_lock("\n__kmp_dump_queuing_lock: TRACE BEGINS HERE! \n");
1045 
1046  i = tc % TRACE_BUF_ELE;
1047  __kmp_printf_no_lock("%s\n", traces[i]);
1048  i = (i + 1) % TRACE_BUF_ELE;
1049  while (i != (tc % TRACE_BUF_ELE)) {
1050  __kmp_printf_no_lock("%s", traces[i]);
1051  i = (i + 1) % TRACE_BUF_ELE;
1052  }
1053  __kmp_printf_no_lock("\n");
1054 
1055  __kmp_printf_no_lock("\n__kmp_dump_queuing_lock: gtid+1:%d, spin_here:%d, "
1056  "next_wait:%d, head_id:%d, tail_id:%d\n",
1057  gtid + 1, this_thr->th.th_spin_here,
1058  this_thr->th.th_next_waiting, head_id, tail_id);
1059 
1060  __kmp_printf_no_lock("\t\thead: %d ", lck->lk.head_id);
1061 
1062  if (lck->lk.head_id >= 1) {
1063  t = __kmp_threads[lck->lk.head_id - 1]->th.th_next_waiting;
1064  while (t > 0) {
1065  __kmp_printf_no_lock("-> %d ", t);
1066  t = __kmp_threads[t - 1]->th.th_next_waiting;
1067  }
1068  }
1069  __kmp_printf_no_lock("; tail: %d ", lck->lk.tail_id);
1070  __kmp_printf_no_lock("\n\n");
1071 }
1072 
1073 #endif /* DEBUG_QUEUING_LOCKS */
1074 
1075 static kmp_int32 __kmp_get_queuing_lock_owner(kmp_queuing_lock_t *lck) {
1076  return TCR_4(lck->lk.owner_id) - 1;
1077 }
1078 
1079 static inline bool __kmp_is_queuing_lock_nestable(kmp_queuing_lock_t *lck) {
1080  return lck->lk.depth_locked != -1;
1081 }
1082 
1083 /* Acquire a lock using a the queuing lock implementation */
1084 template <bool takeTime>
1085 /* [TLW] The unused template above is left behind because of what BEB believes
1086  is a potential compiler problem with __forceinline. */
1087 __forceinline static int
1088 __kmp_acquire_queuing_lock_timed_template(kmp_queuing_lock_t *lck,
1089  kmp_int32 gtid) {
1090  kmp_info_t *this_thr = __kmp_thread_from_gtid(gtid);
1091  volatile kmp_int32 *head_id_p = &lck->lk.head_id;
1092  volatile kmp_int32 *tail_id_p = &lck->lk.tail_id;
1093  volatile kmp_uint32 *spin_here_p;
1094  kmp_int32 need_mf = 1;
1095 
1096 #if OMPT_SUPPORT
1097  ompt_state_t prev_state = ompt_state_undefined;
1098 #endif
1099 
1100  KA_TRACE(1000,
1101  ("__kmp_acquire_queuing_lock: lck:%p, T#%d entering\n", lck, gtid));
1102 
1103  KMP_FSYNC_PREPARE(lck);
1104  KMP_DEBUG_ASSERT(this_thr != NULL);
1105  spin_here_p = &this_thr->th.th_spin_here;
1106 
1107 #ifdef DEBUG_QUEUING_LOCKS
1108  TRACE_LOCK(gtid + 1, "acq ent");
1109  if (*spin_here_p)
1110  __kmp_dump_queuing_lock(this_thr, gtid, lck, *head_id_p, *tail_id_p);
1111  if (this_thr->th.th_next_waiting != 0)
1112  __kmp_dump_queuing_lock(this_thr, gtid, lck, *head_id_p, *tail_id_p);
1113 #endif
1114  KMP_DEBUG_ASSERT(!*spin_here_p);
1115  KMP_DEBUG_ASSERT(this_thr->th.th_next_waiting == 0);
1116 
1117  /* The following st.rel to spin_here_p needs to precede the cmpxchg.acq to
1118  head_id_p that may follow, not just in execution order, but also in
1119  visibility order. This way, when a releasing thread observes the changes to
1120  the queue by this thread, it can rightly assume that spin_here_p has
1121  already been set to TRUE, so that when it sets spin_here_p to FALSE, it is
1122  not premature. If the releasing thread sets spin_here_p to FALSE before
1123  this thread sets it to TRUE, this thread will hang. */
1124  *spin_here_p = TRUE; /* before enqueuing to prevent race */
1125 
1126  while (1) {
1127  kmp_int32 enqueued;
1128  kmp_int32 head;
1129  kmp_int32 tail;
1130 
1131  head = *head_id_p;
1132 
1133  switch (head) {
1134 
1135  case -1: {
1136 #ifdef DEBUG_QUEUING_LOCKS
1137  tail = *tail_id_p;
1138  TRACE_LOCK_HT(gtid + 1, "acq read: ", head, tail);
1139 #endif
1140  tail = 0; /* to make sure next link asynchronously read is not set
1141  accidentally; this assignment prevents us from entering the
1142  if ( t > 0 ) condition in the enqueued case below, which is not
1143  necessary for this state transition */
1144 
1145  need_mf = 0;
1146  /* try (-1,0)->(tid,tid) */
1147  enqueued = KMP_COMPARE_AND_STORE_ACQ64((volatile kmp_int64 *)tail_id_p,
1148  KMP_PACK_64(-1, 0),
1149  KMP_PACK_64(gtid + 1, gtid + 1));
1150 #ifdef DEBUG_QUEUING_LOCKS
1151  if (enqueued)
1152  TRACE_LOCK(gtid + 1, "acq enq: (-1,0)->(tid,tid)");
1153 #endif
1154  } break;
1155 
1156  default: {
1157  tail = *tail_id_p;
1158  KMP_DEBUG_ASSERT(tail != gtid + 1);
1159 
1160 #ifdef DEBUG_QUEUING_LOCKS
1161  TRACE_LOCK_HT(gtid + 1, "acq read: ", head, tail);
1162 #endif
1163 
1164  if (tail == 0) {
1165  enqueued = FALSE;
1166  } else {
1167  need_mf = 0;
1168  /* try (h,t) or (h,h)->(h,tid) */
1169  enqueued = KMP_COMPARE_AND_STORE_ACQ32(tail_id_p, tail, gtid + 1);
1170 
1171 #ifdef DEBUG_QUEUING_LOCKS
1172  if (enqueued)
1173  TRACE_LOCK(gtid + 1, "acq enq: (h,t)->(h,tid)");
1174 #endif
1175  }
1176  } break;
1177 
1178  case 0: /* empty queue */
1179  {
1180  kmp_int32 grabbed_lock;
1181 
1182 #ifdef DEBUG_QUEUING_LOCKS
1183  tail = *tail_id_p;
1184  TRACE_LOCK_HT(gtid + 1, "acq read: ", head, tail);
1185 #endif
1186  /* try (0,0)->(-1,0) */
1187 
1188  /* only legal transition out of head = 0 is head = -1 with no change to
1189  * tail */
1190  grabbed_lock = KMP_COMPARE_AND_STORE_ACQ32(head_id_p, 0, -1);
1191 
1192  if (grabbed_lock) {
1193 
1194  *spin_here_p = FALSE;
1195 
1196  KA_TRACE(
1197  1000,
1198  ("__kmp_acquire_queuing_lock: lck:%p, T#%d exiting: no queuing\n",
1199  lck, gtid));
1200 #ifdef DEBUG_QUEUING_LOCKS
1201  TRACE_LOCK_HT(gtid + 1, "acq exit: ", head, 0);
1202 #endif
1203 
1204 #if OMPT_SUPPORT
1205  if (ompt_enabled.enabled && prev_state != ompt_state_undefined) {
1206  /* change the state before clearing wait_id */
1207  this_thr->th.ompt_thread_info.state = prev_state;
1208  this_thr->th.ompt_thread_info.wait_id = 0;
1209  }
1210 #endif
1211 
1212  KMP_FSYNC_ACQUIRED(lck);
1213  return KMP_LOCK_ACQUIRED_FIRST; /* lock holder cannot be on queue */
1214  }
1215  enqueued = FALSE;
1216  } break;
1217  }
1218 
1219 #if OMPT_SUPPORT
1220  if (ompt_enabled.enabled && prev_state == ompt_state_undefined) {
1221  /* this thread will spin; set wait_id before entering wait state */
1222  prev_state = this_thr->th.ompt_thread_info.state;
1223  this_thr->th.ompt_thread_info.wait_id = (uint64_t)lck;
1224  this_thr->th.ompt_thread_info.state = ompt_state_wait_lock;
1225  }
1226 #endif
1227 
1228  if (enqueued) {
1229  if (tail > 0) {
1230  kmp_info_t *tail_thr = __kmp_thread_from_gtid(tail - 1);
1231  KMP_ASSERT(tail_thr != NULL);
1232  tail_thr->th.th_next_waiting = gtid + 1;
1233  /* corresponding wait for this write in release code */
1234  }
1235  KA_TRACE(1000,
1236  ("__kmp_acquire_queuing_lock: lck:%p, T#%d waiting for lock\n",
1237  lck, gtid));
1238 
1239  KMP_MB();
1240  // ToDo: Use __kmp_wait_sleep or similar when blocktime != inf
1241  KMP_WAIT(spin_here_p, FALSE, KMP_EQ, lck);
1242 
1243 #ifdef DEBUG_QUEUING_LOCKS
1244  TRACE_LOCK(gtid + 1, "acq spin");
1245 
1246  if (this_thr->th.th_next_waiting != 0)
1247  __kmp_dump_queuing_lock(this_thr, gtid, lck, *head_id_p, *tail_id_p);
1248 #endif
1249  KMP_DEBUG_ASSERT(this_thr->th.th_next_waiting == 0);
1250  KA_TRACE(1000, ("__kmp_acquire_queuing_lock: lck:%p, T#%d exiting: after "
1251  "waiting on queue\n",
1252  lck, gtid));
1253 
1254 #ifdef DEBUG_QUEUING_LOCKS
1255  TRACE_LOCK(gtid + 1, "acq exit 2");
1256 #endif
1257 
1258 #if OMPT_SUPPORT
1259  /* change the state before clearing wait_id */
1260  this_thr->th.ompt_thread_info.state = prev_state;
1261  this_thr->th.ompt_thread_info.wait_id = 0;
1262 #endif
1263 
1264  /* got lock, we were dequeued by the thread that released lock */
1265  return KMP_LOCK_ACQUIRED_FIRST;
1266  }
1267 
1268  /* Yield if number of threads > number of logical processors */
1269  /* ToDo: Not sure why this should only be in oversubscription case,
1270  maybe should be traditional YIELD_INIT/YIELD_WHEN loop */
1271  KMP_YIELD_OVERSUB();
1272 
1273 #ifdef DEBUG_QUEUING_LOCKS
1274  TRACE_LOCK(gtid + 1, "acq retry");
1275 #endif
1276  }
1277  KMP_ASSERT2(0, "should not get here");
1278  return KMP_LOCK_ACQUIRED_FIRST;
1279 }
1280 
1281 int __kmp_acquire_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) {
1282  KMP_DEBUG_ASSERT(gtid >= 0);
1283 
1284  int retval = __kmp_acquire_queuing_lock_timed_template<false>(lck, gtid);
1285  ANNOTATE_QUEUING_ACQUIRED(lck);
1286  return retval;
1287 }
1288 
1289 static int __kmp_acquire_queuing_lock_with_checks(kmp_queuing_lock_t *lck,
1290  kmp_int32 gtid) {
1291  char const *const func = "omp_set_lock";
1292  if (lck->lk.initialized != lck) {
1293  KMP_FATAL(LockIsUninitialized, func);
1294  }
1295  if (__kmp_is_queuing_lock_nestable(lck)) {
1296  KMP_FATAL(LockNestableUsedAsSimple, func);
1297  }
1298  if (__kmp_get_queuing_lock_owner(lck) == gtid) {
1299  KMP_FATAL(LockIsAlreadyOwned, func);
1300  }
1301 
1302  __kmp_acquire_queuing_lock(lck, gtid);
1303 
1304  lck->lk.owner_id = gtid + 1;
1305  return KMP_LOCK_ACQUIRED_FIRST;
1306 }
1307 
1308 int __kmp_test_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) {
1309  volatile kmp_int32 *head_id_p = &lck->lk.head_id;
1310  kmp_int32 head;
1311 #ifdef KMP_DEBUG
1312  kmp_info_t *this_thr;
1313 #endif
1314 
1315  KA_TRACE(1000, ("__kmp_test_queuing_lock: T#%d entering\n", gtid));
1316  KMP_DEBUG_ASSERT(gtid >= 0);
1317 #ifdef KMP_DEBUG
1318  this_thr = __kmp_thread_from_gtid(gtid);
1319  KMP_DEBUG_ASSERT(this_thr != NULL);
1320  KMP_DEBUG_ASSERT(!this_thr->th.th_spin_here);
1321 #endif
1322 
1323  head = *head_id_p;
1324 
1325  if (head == 0) { /* nobody on queue, nobody holding */
1326  /* try (0,0)->(-1,0) */
1327  if (KMP_COMPARE_AND_STORE_ACQ32(head_id_p, 0, -1)) {
1328  KA_TRACE(1000,
1329  ("__kmp_test_queuing_lock: T#%d exiting: holding lock\n", gtid));
1330  KMP_FSYNC_ACQUIRED(lck);
1331  ANNOTATE_QUEUING_ACQUIRED(lck);
1332  return TRUE;
1333  }
1334  }
1335 
1336  KA_TRACE(1000,
1337  ("__kmp_test_queuing_lock: T#%d exiting: without lock\n", gtid));
1338  return FALSE;
1339 }
1340 
1341 static int __kmp_test_queuing_lock_with_checks(kmp_queuing_lock_t *lck,
1342  kmp_int32 gtid) {
1343  char const *const func = "omp_test_lock";
1344  if (lck->lk.initialized != lck) {
1345  KMP_FATAL(LockIsUninitialized, func);
1346  }
1347  if (__kmp_is_queuing_lock_nestable(lck)) {
1348  KMP_FATAL(LockNestableUsedAsSimple, func);
1349  }
1350 
1351  int retval = __kmp_test_queuing_lock(lck, gtid);
1352 
1353  if (retval) {
1354  lck->lk.owner_id = gtid + 1;
1355  }
1356  return retval;
1357 }
1358 
1359 int __kmp_release_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) {
1360  kmp_info_t *this_thr;
1361  volatile kmp_int32 *head_id_p = &lck->lk.head_id;
1362  volatile kmp_int32 *tail_id_p = &lck->lk.tail_id;
1363 
1364  KA_TRACE(1000,
1365  ("__kmp_release_queuing_lock: lck:%p, T#%d entering\n", lck, gtid));
1366  KMP_DEBUG_ASSERT(gtid >= 0);
1367  this_thr = __kmp_thread_from_gtid(gtid);
1368  KMP_DEBUG_ASSERT(this_thr != NULL);
1369 #ifdef DEBUG_QUEUING_LOCKS
1370  TRACE_LOCK(gtid + 1, "rel ent");
1371 
1372  if (this_thr->th.th_spin_here)
1373  __kmp_dump_queuing_lock(this_thr, gtid, lck, *head_id_p, *tail_id_p);
1374  if (this_thr->th.th_next_waiting != 0)
1375  __kmp_dump_queuing_lock(this_thr, gtid, lck, *head_id_p, *tail_id_p);
1376 #endif
1377  KMP_DEBUG_ASSERT(!this_thr->th.th_spin_here);
1378  KMP_DEBUG_ASSERT(this_thr->th.th_next_waiting == 0);
1379 
1380  KMP_FSYNC_RELEASING(lck);
1381  ANNOTATE_QUEUING_RELEASED(lck);
1382 
1383  while (1) {
1384  kmp_int32 dequeued;
1385  kmp_int32 head;
1386  kmp_int32 tail;
1387 
1388  head = *head_id_p;
1389 
1390 #ifdef DEBUG_QUEUING_LOCKS
1391  tail = *tail_id_p;
1392  TRACE_LOCK_HT(gtid + 1, "rel read: ", head, tail);
1393  if (head == 0)
1394  __kmp_dump_queuing_lock(this_thr, gtid, lck, head, tail);
1395 #endif
1396  KMP_DEBUG_ASSERT(head !=
1397  0); /* holding the lock, head must be -1 or queue head */
1398 
1399  if (head == -1) { /* nobody on queue */
1400  /* try (-1,0)->(0,0) */
1401  if (KMP_COMPARE_AND_STORE_REL32(head_id_p, -1, 0)) {
1402  KA_TRACE(
1403  1000,
1404  ("__kmp_release_queuing_lock: lck:%p, T#%d exiting: queue empty\n",
1405  lck, gtid));
1406 #ifdef DEBUG_QUEUING_LOCKS
1407  TRACE_LOCK_HT(gtid + 1, "rel exit: ", 0, 0);
1408 #endif
1409 
1410 #if OMPT_SUPPORT
1411 /* nothing to do - no other thread is trying to shift blame */
1412 #endif
1413  return KMP_LOCK_RELEASED;
1414  }
1415  dequeued = FALSE;
1416  } else {
1417  KMP_MB();
1418  tail = *tail_id_p;
1419  if (head == tail) { /* only one thread on the queue */
1420 #ifdef DEBUG_QUEUING_LOCKS
1421  if (head <= 0)
1422  __kmp_dump_queuing_lock(this_thr, gtid, lck, head, tail);
1423 #endif
1424  KMP_DEBUG_ASSERT(head > 0);
1425 
1426  /* try (h,h)->(-1,0) */
1427  dequeued = KMP_COMPARE_AND_STORE_REL64(
1428  RCAST(volatile kmp_int64 *, tail_id_p), KMP_PACK_64(head, head),
1429  KMP_PACK_64(-1, 0));
1430 #ifdef DEBUG_QUEUING_LOCKS
1431  TRACE_LOCK(gtid + 1, "rel deq: (h,h)->(-1,0)");
1432 #endif
1433 
1434  } else {
1435  volatile kmp_int32 *waiting_id_p;
1436  kmp_info_t *head_thr = __kmp_thread_from_gtid(head - 1);
1437  KMP_DEBUG_ASSERT(head_thr != NULL);
1438  waiting_id_p = &head_thr->th.th_next_waiting;
1439 
1440 /* Does this require synchronous reads? */
1441 #ifdef DEBUG_QUEUING_LOCKS
1442  if (head <= 0 || tail <= 0)
1443  __kmp_dump_queuing_lock(this_thr, gtid, lck, head, tail);
1444 #endif
1445  KMP_DEBUG_ASSERT(head > 0 && tail > 0);
1446 
1447  /* try (h,t)->(h',t) or (t,t) */
1448  KMP_MB();
1449  /* make sure enqueuing thread has time to update next waiting thread
1450  * field */
1451  *head_id_p =
1452  KMP_WAIT((volatile kmp_uint32 *)waiting_id_p, 0, KMP_NEQ, NULL);
1453 #ifdef DEBUG_QUEUING_LOCKS
1454  TRACE_LOCK(gtid + 1, "rel deq: (h,t)->(h',t)");
1455 #endif
1456  dequeued = TRUE;
1457  }
1458  }
1459 
1460  if (dequeued) {
1461  kmp_info_t *head_thr = __kmp_thread_from_gtid(head - 1);
1462  KMP_DEBUG_ASSERT(head_thr != NULL);
1463 
1464 /* Does this require synchronous reads? */
1465 #ifdef DEBUG_QUEUING_LOCKS
1466  if (head <= 0 || tail <= 0)
1467  __kmp_dump_queuing_lock(this_thr, gtid, lck, head, tail);
1468 #endif
1469  KMP_DEBUG_ASSERT(head > 0 && tail > 0);
1470 
1471  /* For clean code only. Thread not released until next statement prevents
1472  race with acquire code. */
1473  head_thr->th.th_next_waiting = 0;
1474 #ifdef DEBUG_QUEUING_LOCKS
1475  TRACE_LOCK_T(gtid + 1, "rel nw=0 for t=", head);
1476 #endif
1477 
1478  KMP_MB();
1479  /* reset spin value */
1480  head_thr->th.th_spin_here = FALSE;
1481 
1482  KA_TRACE(1000, ("__kmp_release_queuing_lock: lck:%p, T#%d exiting: after "
1483  "dequeuing\n",
1484  lck, gtid));
1485 #ifdef DEBUG_QUEUING_LOCKS
1486  TRACE_LOCK(gtid + 1, "rel exit 2");
1487 #endif
1488  return KMP_LOCK_RELEASED;
1489  }
1490 /* KMP_CPU_PAUSE(); don't want to make releasing thread hold up acquiring
1491  threads */
1492 
1493 #ifdef DEBUG_QUEUING_LOCKS
1494  TRACE_LOCK(gtid + 1, "rel retry");
1495 #endif
1496 
1497  } /* while */
1498  KMP_ASSERT2(0, "should not get here");
1499  return KMP_LOCK_RELEASED;
1500 }
1501 
1502 static int __kmp_release_queuing_lock_with_checks(kmp_queuing_lock_t *lck,
1503  kmp_int32 gtid) {
1504  char const *const func = "omp_unset_lock";
1505  KMP_MB(); /* in case another processor initialized lock */
1506  if (lck->lk.initialized != lck) {
1507  KMP_FATAL(LockIsUninitialized, func);
1508  }
1509  if (__kmp_is_queuing_lock_nestable(lck)) {
1510  KMP_FATAL(LockNestableUsedAsSimple, func);
1511  }
1512  if (__kmp_get_queuing_lock_owner(lck) == -1) {
1513  KMP_FATAL(LockUnsettingFree, func);
1514  }
1515  if (__kmp_get_queuing_lock_owner(lck) != gtid) {
1516  KMP_FATAL(LockUnsettingSetByAnother, func);
1517  }
1518  lck->lk.owner_id = 0;
1519  return __kmp_release_queuing_lock(lck, gtid);
1520 }
1521 
1522 void __kmp_init_queuing_lock(kmp_queuing_lock_t *lck) {
1523  lck->lk.location = NULL;
1524  lck->lk.head_id = 0;
1525  lck->lk.tail_id = 0;
1526  lck->lk.next_ticket = 0;
1527  lck->lk.now_serving = 0;
1528  lck->lk.owner_id = 0; // no thread owns the lock.
1529  lck->lk.depth_locked = -1; // >= 0 for nestable locks, -1 for simple locks.
1530  lck->lk.initialized = lck;
1531 
1532  KA_TRACE(1000, ("__kmp_init_queuing_lock: lock %p initialized\n", lck));
1533 }
1534 
1535 void __kmp_destroy_queuing_lock(kmp_queuing_lock_t *lck) {
1536  lck->lk.initialized = NULL;
1537  lck->lk.location = NULL;
1538  lck->lk.head_id = 0;
1539  lck->lk.tail_id = 0;
1540  lck->lk.next_ticket = 0;
1541  lck->lk.now_serving = 0;
1542  lck->lk.owner_id = 0;
1543  lck->lk.depth_locked = -1;
1544 }
1545 
1546 static void __kmp_destroy_queuing_lock_with_checks(kmp_queuing_lock_t *lck) {
1547  char const *const func = "omp_destroy_lock";
1548  if (lck->lk.initialized != lck) {
1549  KMP_FATAL(LockIsUninitialized, func);
1550  }
1551  if (__kmp_is_queuing_lock_nestable(lck)) {
1552  KMP_FATAL(LockNestableUsedAsSimple, func);
1553  }
1554  if (__kmp_get_queuing_lock_owner(lck) != -1) {
1555  KMP_FATAL(LockStillOwned, func);
1556  }
1557  __kmp_destroy_queuing_lock(lck);
1558 }
1559 
1560 // nested queuing locks
1561 
1562 int __kmp_acquire_nested_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) {
1563  KMP_DEBUG_ASSERT(gtid >= 0);
1564 
1565  if (__kmp_get_queuing_lock_owner(lck) == gtid) {
1566  lck->lk.depth_locked += 1;
1567  return KMP_LOCK_ACQUIRED_NEXT;
1568  } else {
1569  __kmp_acquire_queuing_lock_timed_template<false>(lck, gtid);
1570  ANNOTATE_QUEUING_ACQUIRED(lck);
1571  KMP_MB();
1572  lck->lk.depth_locked = 1;
1573  KMP_MB();
1574  lck->lk.owner_id = gtid + 1;
1575  return KMP_LOCK_ACQUIRED_FIRST;
1576  }
1577 }
1578 
1579 static int
1580 __kmp_acquire_nested_queuing_lock_with_checks(kmp_queuing_lock_t *lck,
1581  kmp_int32 gtid) {
1582  char const *const func = "omp_set_nest_lock";
1583  if (lck->lk.initialized != lck) {
1584  KMP_FATAL(LockIsUninitialized, func);
1585  }
1586  if (!__kmp_is_queuing_lock_nestable(lck)) {
1587  KMP_FATAL(LockSimpleUsedAsNestable, func);
1588  }
1589  return __kmp_acquire_nested_queuing_lock(lck, gtid);
1590 }
1591 
1592 int __kmp_test_nested_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) {
1593  int retval;
1594 
1595  KMP_DEBUG_ASSERT(gtid >= 0);
1596 
1597  if (__kmp_get_queuing_lock_owner(lck) == gtid) {
1598  retval = ++lck->lk.depth_locked;
1599  } else if (!__kmp_test_queuing_lock(lck, gtid)) {
1600  retval = 0;
1601  } else {
1602  KMP_MB();
1603  retval = lck->lk.depth_locked = 1;
1604  KMP_MB();
1605  lck->lk.owner_id = gtid + 1;
1606  }
1607  return retval;
1608 }
1609 
1610 static int __kmp_test_nested_queuing_lock_with_checks(kmp_queuing_lock_t *lck,
1611  kmp_int32 gtid) {
1612  char const *const func = "omp_test_nest_lock";
1613  if (lck->lk.initialized != lck) {
1614  KMP_FATAL(LockIsUninitialized, func);
1615  }
1616  if (!__kmp_is_queuing_lock_nestable(lck)) {
1617  KMP_FATAL(LockSimpleUsedAsNestable, func);
1618  }
1619  return __kmp_test_nested_queuing_lock(lck, gtid);
1620 }
1621 
1622 int __kmp_release_nested_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) {
1623  KMP_DEBUG_ASSERT(gtid >= 0);
1624 
1625  KMP_MB();
1626  if (--(lck->lk.depth_locked) == 0) {
1627  KMP_MB();
1628  lck->lk.owner_id = 0;
1629  __kmp_release_queuing_lock(lck, gtid);
1630  return KMP_LOCK_RELEASED;
1631  }
1632  return KMP_LOCK_STILL_HELD;
1633 }
1634 
1635 static int
1636 __kmp_release_nested_queuing_lock_with_checks(kmp_queuing_lock_t *lck,
1637  kmp_int32 gtid) {
1638  char const *const func = "omp_unset_nest_lock";
1639  KMP_MB(); /* in case another processor initialized lock */
1640  if (lck->lk.initialized != lck) {
1641  KMP_FATAL(LockIsUninitialized, func);
1642  }
1643  if (!__kmp_is_queuing_lock_nestable(lck)) {
1644  KMP_FATAL(LockSimpleUsedAsNestable, func);
1645  }
1646  if (__kmp_get_queuing_lock_owner(lck) == -1) {
1647  KMP_FATAL(LockUnsettingFree, func);
1648  }
1649  if (__kmp_get_queuing_lock_owner(lck) != gtid) {
1650  KMP_FATAL(LockUnsettingSetByAnother, func);
1651  }
1652  return __kmp_release_nested_queuing_lock(lck, gtid);
1653 }
1654 
1655 void __kmp_init_nested_queuing_lock(kmp_queuing_lock_t *lck) {
1656  __kmp_init_queuing_lock(lck);
1657  lck->lk.depth_locked = 0; // >= 0 for nestable locks, -1 for simple locks
1658 }
1659 
1660 void __kmp_destroy_nested_queuing_lock(kmp_queuing_lock_t *lck) {
1661  __kmp_destroy_queuing_lock(lck);
1662  lck->lk.depth_locked = 0;
1663 }
1664 
1665 static void
1666 __kmp_destroy_nested_queuing_lock_with_checks(kmp_queuing_lock_t *lck) {
1667  char const *const func = "omp_destroy_nest_lock";
1668  if (lck->lk.initialized != lck) {
1669  KMP_FATAL(LockIsUninitialized, func);
1670  }
1671  if (!__kmp_is_queuing_lock_nestable(lck)) {
1672  KMP_FATAL(LockSimpleUsedAsNestable, func);
1673  }
1674  if (__kmp_get_queuing_lock_owner(lck) != -1) {
1675  KMP_FATAL(LockStillOwned, func);
1676  }
1677  __kmp_destroy_nested_queuing_lock(lck);
1678 }
1679 
1680 // access functions to fields which don't exist for all lock kinds.
1681 
1682 static const ident_t *__kmp_get_queuing_lock_location(kmp_queuing_lock_t *lck) {
1683  return lck->lk.location;
1684 }
1685 
1686 static void __kmp_set_queuing_lock_location(kmp_queuing_lock_t *lck,
1687  const ident_t *loc) {
1688  lck->lk.location = loc;
1689 }
1690 
1691 static kmp_lock_flags_t __kmp_get_queuing_lock_flags(kmp_queuing_lock_t *lck) {
1692  return lck->lk.flags;
1693 }
1694 
1695 static void __kmp_set_queuing_lock_flags(kmp_queuing_lock_t *lck,
1696  kmp_lock_flags_t flags) {
1697  lck->lk.flags = flags;
1698 }
1699 
1700 #if KMP_USE_ADAPTIVE_LOCKS
1701 
1702 /* RTM Adaptive locks */
1703 
1704 #if (KMP_COMPILER_ICC && __INTEL_COMPILER >= 1300) || \
1705  (KMP_COMPILER_MSVC && _MSC_VER >= 1700) || \
1706  (KMP_COMPILER_CLANG && KMP_MSVC_COMPAT)
1707 
1708 #include <immintrin.h>
1709 #define SOFT_ABORT_MASK (_XABORT_RETRY | _XABORT_CONFLICT | _XABORT_EXPLICIT)
1710 
1711 #else
1712 
1713 // Values from the status register after failed speculation.
1714 #define _XBEGIN_STARTED (~0u)
1715 #define _XABORT_EXPLICIT (1 << 0)
1716 #define _XABORT_RETRY (1 << 1)
1717 #define _XABORT_CONFLICT (1 << 2)
1718 #define _XABORT_CAPACITY (1 << 3)
1719 #define _XABORT_DEBUG (1 << 4)
1720 #define _XABORT_NESTED (1 << 5)
1721 #define _XABORT_CODE(x) ((unsigned char)(((x) >> 24) & 0xFF))
1722 
1723 // Aborts for which it's worth trying again immediately
1724 #define SOFT_ABORT_MASK (_XABORT_RETRY | _XABORT_CONFLICT | _XABORT_EXPLICIT)
1725 
1726 #define STRINGIZE_INTERNAL(arg) #arg
1727 #define STRINGIZE(arg) STRINGIZE_INTERNAL(arg)
1728 
1729 // Access to RTM instructions
1730 /*A version of XBegin which returns -1 on speculation, and the value of EAX on
1731  an abort. This is the same definition as the compiler intrinsic that will be
1732  supported at some point. */
1733 static __inline int _xbegin() {
1734  int res = -1;
1735 
1736 #if KMP_OS_WINDOWS
1737 #if KMP_ARCH_X86_64
1738  _asm {
1739  _emit 0xC7
1740  _emit 0xF8
1741  _emit 2
1742  _emit 0
1743  _emit 0
1744  _emit 0
1745  jmp L2
1746  mov res, eax
1747  L2:
1748  }
1749 #else /* IA32 */
1750  _asm {
1751  _emit 0xC7
1752  _emit 0xF8
1753  _emit 2
1754  _emit 0
1755  _emit 0
1756  _emit 0
1757  jmp L2
1758  mov res, eax
1759  L2:
1760  }
1761 #endif // KMP_ARCH_X86_64
1762 #else
1763  /* Note that %eax must be noted as killed (clobbered), because the XSR is
1764  returned in %eax(%rax) on abort. Other register values are restored, so
1765  don't need to be killed.
1766 
1767  We must also mark 'res' as an input and an output, since otherwise
1768  'res=-1' may be dropped as being dead, whereas we do need the assignment on
1769  the successful (i.e., non-abort) path. */
1770  __asm__ volatile("1: .byte 0xC7; .byte 0xF8;\n"
1771  " .long 1f-1b-6\n"
1772  " jmp 2f\n"
1773  "1: movl %%eax,%0\n"
1774  "2:"
1775  : "+r"(res)::"memory", "%eax");
1776 #endif // KMP_OS_WINDOWS
1777  return res;
1778 }
1779 
1780 /* Transaction end */
1781 static __inline void _xend() {
1782 #if KMP_OS_WINDOWS
1783  __asm {
1784  _emit 0x0f
1785  _emit 0x01
1786  _emit 0xd5
1787  }
1788 #else
1789  __asm__ volatile(".byte 0x0f; .byte 0x01; .byte 0xd5" ::: "memory");
1790 #endif
1791 }
1792 
1793 /* This is a macro, the argument must be a single byte constant which can be
1794  evaluated by the inline assembler, since it is emitted as a byte into the
1795  assembly code. */
1796 // clang-format off
1797 #if KMP_OS_WINDOWS
1798 #define _xabort(ARG) _asm _emit 0xc6 _asm _emit 0xf8 _asm _emit ARG
1799 #else
1800 #define _xabort(ARG) \
1801  __asm__ volatile(".byte 0xC6; .byte 0xF8; .byte " STRINGIZE(ARG):::"memory");
1802 #endif
1803 // clang-format on
1804 #endif // KMP_COMPILER_ICC && __INTEL_COMPILER >= 1300
1805 
1806 // Statistics is collected for testing purpose
1807 #if KMP_DEBUG_ADAPTIVE_LOCKS
1808 
1809 // We accumulate speculative lock statistics when the lock is destroyed. We
1810 // keep locks that haven't been destroyed in the liveLocks list so that we can
1811 // grab their statistics too.
1812 static kmp_adaptive_lock_statistics_t destroyedStats;
1813 
1814 // To hold the list of live locks.
1815 static kmp_adaptive_lock_info_t liveLocks;
1816 
1817 // A lock so we can safely update the list of locks.
1818 static kmp_bootstrap_lock_t chain_lock =
1819  KMP_BOOTSTRAP_LOCK_INITIALIZER(chain_lock);
1820 
1821 // Initialize the list of stats.
1822 void __kmp_init_speculative_stats() {
1823  kmp_adaptive_lock_info_t *lck = &liveLocks;
1824 
1825  memset(CCAST(kmp_adaptive_lock_statistics_t *, &(lck->stats)), 0,
1826  sizeof(lck->stats));
1827  lck->stats.next = lck;
1828  lck->stats.prev = lck;
1829 
1830  KMP_ASSERT(lck->stats.next->stats.prev == lck);
1831  KMP_ASSERT(lck->stats.prev->stats.next == lck);
1832 
1833  __kmp_init_bootstrap_lock(&chain_lock);
1834 }
1835 
1836 // Insert the lock into the circular list
1837 static void __kmp_remember_lock(kmp_adaptive_lock_info_t *lck) {
1838  __kmp_acquire_bootstrap_lock(&chain_lock);
1839 
1840  lck->stats.next = liveLocks.stats.next;
1841  lck->stats.prev = &liveLocks;
1842 
1843  liveLocks.stats.next = lck;
1844  lck->stats.next->stats.prev = lck;
1845 
1846  KMP_ASSERT(lck->stats.next->stats.prev == lck);
1847  KMP_ASSERT(lck->stats.prev->stats.next == lck);
1848 
1849  __kmp_release_bootstrap_lock(&chain_lock);
1850 }
1851 
1852 static void __kmp_forget_lock(kmp_adaptive_lock_info_t *lck) {
1853  KMP_ASSERT(lck->stats.next->stats.prev == lck);
1854  KMP_ASSERT(lck->stats.prev->stats.next == lck);
1855 
1856  kmp_adaptive_lock_info_t *n = lck->stats.next;
1857  kmp_adaptive_lock_info_t *p = lck->stats.prev;
1858 
1859  n->stats.prev = p;
1860  p->stats.next = n;
1861 }
1862 
1863 static void __kmp_zero_speculative_stats(kmp_adaptive_lock_info_t *lck) {
1864  memset(CCAST(kmp_adaptive_lock_statistics_t *, &lck->stats), 0,
1865  sizeof(lck->stats));
1866  __kmp_remember_lock(lck);
1867 }
1868 
1869 static void __kmp_add_stats(kmp_adaptive_lock_statistics_t *t,
1870  kmp_adaptive_lock_info_t *lck) {
1871  kmp_adaptive_lock_statistics_t volatile *s = &lck->stats;
1872 
1873  t->nonSpeculativeAcquireAttempts += lck->acquire_attempts;
1874  t->successfulSpeculations += s->successfulSpeculations;
1875  t->hardFailedSpeculations += s->hardFailedSpeculations;
1876  t->softFailedSpeculations += s->softFailedSpeculations;
1877  t->nonSpeculativeAcquires += s->nonSpeculativeAcquires;
1878  t->lemmingYields += s->lemmingYields;
1879 }
1880 
1881 static void __kmp_accumulate_speculative_stats(kmp_adaptive_lock_info_t *lck) {
1882  __kmp_acquire_bootstrap_lock(&chain_lock);
1883 
1884  __kmp_add_stats(&destroyedStats, lck);
1885  __kmp_forget_lock(lck);
1886 
1887  __kmp_release_bootstrap_lock(&chain_lock);
1888 }
1889 
1890 static float percent(kmp_uint32 count, kmp_uint32 total) {
1891  return (total == 0) ? 0.0 : (100.0 * count) / total;
1892 }
1893 
1894 static FILE *__kmp_open_stats_file() {
1895  if (strcmp(__kmp_speculative_statsfile, "-") == 0)
1896  return stdout;
1897 
1898  size_t buffLen = KMP_STRLEN(__kmp_speculative_statsfile) + 20;
1899  char buffer[buffLen];
1900  KMP_SNPRINTF(&buffer[0], buffLen, __kmp_speculative_statsfile,
1901  (kmp_int32)getpid());
1902  FILE *result = fopen(&buffer[0], "w");
1903 
1904  // Maybe we should issue a warning here...
1905  return result ? result : stdout;
1906 }
1907 
1908 void __kmp_print_speculative_stats() {
1909  kmp_adaptive_lock_statistics_t total = destroyedStats;
1910  kmp_adaptive_lock_info_t *lck;
1911 
1912  for (lck = liveLocks.stats.next; lck != &liveLocks; lck = lck->stats.next) {
1913  __kmp_add_stats(&total, lck);
1914  }
1915  kmp_adaptive_lock_statistics_t *t = &total;
1916  kmp_uint32 totalSections =
1917  t->nonSpeculativeAcquires + t->successfulSpeculations;
1918  kmp_uint32 totalSpeculations = t->successfulSpeculations +
1919  t->hardFailedSpeculations +
1920  t->softFailedSpeculations;
1921  if (totalSections <= 0)
1922  return;
1923 
1924  FILE *statsFile = __kmp_open_stats_file();
1925 
1926  fprintf(statsFile, "Speculative lock statistics (all approximate!)\n");
1927  fprintf(statsFile, " Lock parameters: \n"
1928  " max_soft_retries : %10d\n"
1929  " max_badness : %10d\n",
1930  __kmp_adaptive_backoff_params.max_soft_retries,
1931  __kmp_adaptive_backoff_params.max_badness);
1932  fprintf(statsFile, " Non-speculative acquire attempts : %10d\n",
1933  t->nonSpeculativeAcquireAttempts);
1934  fprintf(statsFile, " Total critical sections : %10d\n",
1935  totalSections);
1936  fprintf(statsFile, " Successful speculations : %10d (%5.1f%%)\n",
1937  t->successfulSpeculations,
1938  percent(t->successfulSpeculations, totalSections));
1939  fprintf(statsFile, " Non-speculative acquires : %10d (%5.1f%%)\n",
1940  t->nonSpeculativeAcquires,
1941  percent(t->nonSpeculativeAcquires, totalSections));
1942  fprintf(statsFile, " Lemming yields : %10d\n\n",
1943  t->lemmingYields);
1944 
1945  fprintf(statsFile, " Speculative acquire attempts : %10d\n",
1946  totalSpeculations);
1947  fprintf(statsFile, " Successes : %10d (%5.1f%%)\n",
1948  t->successfulSpeculations,
1949  percent(t->successfulSpeculations, totalSpeculations));
1950  fprintf(statsFile, " Soft failures : %10d (%5.1f%%)\n",
1951  t->softFailedSpeculations,
1952  percent(t->softFailedSpeculations, totalSpeculations));
1953  fprintf(statsFile, " Hard failures : %10d (%5.1f%%)\n",
1954  t->hardFailedSpeculations,
1955  percent(t->hardFailedSpeculations, totalSpeculations));
1956 
1957  if (statsFile != stdout)
1958  fclose(statsFile);
1959 }
1960 
1961 #define KMP_INC_STAT(lck, stat) (lck->lk.adaptive.stats.stat++)
1962 #else
1963 #define KMP_INC_STAT(lck, stat)
1964 
1965 #endif // KMP_DEBUG_ADAPTIVE_LOCKS
1966 
1967 static inline bool __kmp_is_unlocked_queuing_lock(kmp_queuing_lock_t *lck) {
1968  // It is enough to check that the head_id is zero.
1969  // We don't also need to check the tail.
1970  bool res = lck->lk.head_id == 0;
1971 
1972 // We need a fence here, since we must ensure that no memory operations
1973 // from later in this thread float above that read.
1974 #if KMP_COMPILER_ICC
1975  _mm_mfence();
1976 #else
1977  __sync_synchronize();
1978 #endif
1979 
1980  return res;
1981 }
1982 
1983 // Functions for manipulating the badness
1984 static __inline void
1985 __kmp_update_badness_after_success(kmp_adaptive_lock_t *lck) {
1986  // Reset the badness to zero so we eagerly try to speculate again
1987  lck->lk.adaptive.badness = 0;
1988  KMP_INC_STAT(lck, successfulSpeculations);
1989 }
1990 
1991 // Create a bit mask with one more set bit.
1992 static __inline void __kmp_step_badness(kmp_adaptive_lock_t *lck) {
1993  kmp_uint32 newBadness = (lck->lk.adaptive.badness << 1) | 1;
1994  if (newBadness > lck->lk.adaptive.max_badness) {
1995  return;
1996  } else {
1997  lck->lk.adaptive.badness = newBadness;
1998  }
1999 }
2000 
2001 // Check whether speculation should be attempted.
2002 static __inline int __kmp_should_speculate(kmp_adaptive_lock_t *lck,
2003  kmp_int32 gtid) {
2004  kmp_uint32 badness = lck->lk.adaptive.badness;
2005  kmp_uint32 attempts = lck->lk.adaptive.acquire_attempts;
2006  int res = (attempts & badness) == 0;
2007  return res;
2008 }
2009 
2010 // Attempt to acquire only the speculative lock.
2011 // Does not back off to the non-speculative lock.
2012 static int __kmp_test_adaptive_lock_only(kmp_adaptive_lock_t *lck,
2013  kmp_int32 gtid) {
2014  int retries = lck->lk.adaptive.max_soft_retries;
2015 
2016  // We don't explicitly count the start of speculation, rather we record the
2017  // results (success, hard fail, soft fail). The sum of all of those is the
2018  // total number of times we started speculation since all speculations must
2019  // end one of those ways.
2020  do {
2021  kmp_uint32 status = _xbegin();
2022  // Switch this in to disable actual speculation but exercise at least some
2023  // of the rest of the code. Useful for debugging...
2024  // kmp_uint32 status = _XABORT_NESTED;
2025 
2026  if (status == _XBEGIN_STARTED) {
2027  /* We have successfully started speculation. Check that no-one acquired
2028  the lock for real between when we last looked and now. This also gets
2029  the lock cache line into our read-set, which we need so that we'll
2030  abort if anyone later claims it for real. */
2031  if (!__kmp_is_unlocked_queuing_lock(GET_QLK_PTR(lck))) {
2032  // Lock is now visibly acquired, so someone beat us to it. Abort the
2033  // transaction so we'll restart from _xbegin with the failure status.
2034  _xabort(0x01);
2035  KMP_ASSERT2(0, "should not get here");
2036  }
2037  return 1; // Lock has been acquired (speculatively)
2038  } else {
2039  // We have aborted, update the statistics
2040  if (status & SOFT_ABORT_MASK) {
2041  KMP_INC_STAT(lck, softFailedSpeculations);
2042  // and loop round to retry.
2043  } else {
2044  KMP_INC_STAT(lck, hardFailedSpeculations);
2045  // Give up if we had a hard failure.
2046  break;
2047  }
2048  }
2049  } while (retries--); // Loop while we have retries, and didn't fail hard.
2050 
2051  // Either we had a hard failure or we didn't succeed softly after
2052  // the full set of attempts, so back off the badness.
2053  __kmp_step_badness(lck);
2054  return 0;
2055 }
2056 
2057 // Attempt to acquire the speculative lock, or back off to the non-speculative
2058 // one if the speculative lock cannot be acquired.
2059 // We can succeed speculatively, non-speculatively, or fail.
2060 static int __kmp_test_adaptive_lock(kmp_adaptive_lock_t *lck, kmp_int32 gtid) {
2061  // First try to acquire the lock speculatively
2062  if (__kmp_should_speculate(lck, gtid) &&
2063  __kmp_test_adaptive_lock_only(lck, gtid))
2064  return 1;
2065 
2066  // Speculative acquisition failed, so try to acquire it non-speculatively.
2067  // Count the non-speculative acquire attempt
2068  lck->lk.adaptive.acquire_attempts++;
2069 
2070  // Use base, non-speculative lock.
2071  if (__kmp_test_queuing_lock(GET_QLK_PTR(lck), gtid)) {
2072  KMP_INC_STAT(lck, nonSpeculativeAcquires);
2073  return 1; // Lock is acquired (non-speculatively)
2074  } else {
2075  return 0; // Failed to acquire the lock, it's already visibly locked.
2076  }
2077 }
2078 
2079 static int __kmp_test_adaptive_lock_with_checks(kmp_adaptive_lock_t *lck,
2080  kmp_int32 gtid) {
2081  char const *const func = "omp_test_lock";
2082  if (lck->lk.qlk.initialized != GET_QLK_PTR(lck)) {
2083  KMP_FATAL(LockIsUninitialized, func);
2084  }
2085 
2086  int retval = __kmp_test_adaptive_lock(lck, gtid);
2087 
2088  if (retval) {
2089  lck->lk.qlk.owner_id = gtid + 1;
2090  }
2091  return retval;
2092 }
2093 
2094 // Block until we can acquire a speculative, adaptive lock. We check whether we
2095 // should be trying to speculate. If we should be, we check the real lock to see
2096 // if it is free, and, if not, pause without attempting to acquire it until it
2097 // is. Then we try the speculative acquire. This means that although we suffer
2098 // from lemmings a little (because all we can't acquire the lock speculatively
2099 // until the queue of threads waiting has cleared), we don't get into a state
2100 // where we can never acquire the lock speculatively (because we force the queue
2101 // to clear by preventing new arrivals from entering the queue). This does mean
2102 // that when we're trying to break lemmings, the lock is no longer fair. However
2103 // OpenMP makes no guarantee that its locks are fair, so this isn't a real
2104 // problem.
2105 static void __kmp_acquire_adaptive_lock(kmp_adaptive_lock_t *lck,
2106  kmp_int32 gtid) {
2107  if (__kmp_should_speculate(lck, gtid)) {
2108  if (__kmp_is_unlocked_queuing_lock(GET_QLK_PTR(lck))) {
2109  if (__kmp_test_adaptive_lock_only(lck, gtid))
2110  return;
2111  // We tried speculation and failed, so give up.
2112  } else {
2113  // We can't try speculation until the lock is free, so we pause here
2114  // (without suspending on the queueing lock, to allow it to drain, then
2115  // try again. All other threads will also see the same result for
2116  // shouldSpeculate, so will be doing the same if they try to claim the
2117  // lock from now on.
2118  while (!__kmp_is_unlocked_queuing_lock(GET_QLK_PTR(lck))) {
2119  KMP_INC_STAT(lck, lemmingYields);
2120  KMP_YIELD(TRUE);
2121  }
2122 
2123  if (__kmp_test_adaptive_lock_only(lck, gtid))
2124  return;
2125  }
2126  }
2127 
2128  // Speculative acquisition failed, so acquire it non-speculatively.
2129  // Count the non-speculative acquire attempt
2130  lck->lk.adaptive.acquire_attempts++;
2131 
2132  __kmp_acquire_queuing_lock_timed_template<FALSE>(GET_QLK_PTR(lck), gtid);
2133  // We have acquired the base lock, so count that.
2134  KMP_INC_STAT(lck, nonSpeculativeAcquires);
2135  ANNOTATE_QUEUING_ACQUIRED(lck);
2136 }
2137 
2138 static void __kmp_acquire_adaptive_lock_with_checks(kmp_adaptive_lock_t *lck,
2139  kmp_int32 gtid) {
2140  char const *const func = "omp_set_lock";
2141  if (lck->lk.qlk.initialized != GET_QLK_PTR(lck)) {
2142  KMP_FATAL(LockIsUninitialized, func);
2143  }
2144  if (__kmp_get_queuing_lock_owner(GET_QLK_PTR(lck)) == gtid) {
2145  KMP_FATAL(LockIsAlreadyOwned, func);
2146  }
2147 
2148  __kmp_acquire_adaptive_lock(lck, gtid);
2149 
2150  lck->lk.qlk.owner_id = gtid + 1;
2151 }
2152 
2153 static int __kmp_release_adaptive_lock(kmp_adaptive_lock_t *lck,
2154  kmp_int32 gtid) {
2155  if (__kmp_is_unlocked_queuing_lock(GET_QLK_PTR(
2156  lck))) { // If the lock doesn't look claimed we must be speculating.
2157  // (Or the user's code is buggy and they're releasing without locking;
2158  // if we had XTEST we'd be able to check that case...)
2159  _xend(); // Exit speculation
2160  __kmp_update_badness_after_success(lck);
2161  } else { // Since the lock *is* visibly locked we're not speculating,
2162  // so should use the underlying lock's release scheme.
2163  __kmp_release_queuing_lock(GET_QLK_PTR(lck), gtid);
2164  }
2165  return KMP_LOCK_RELEASED;
2166 }
2167 
2168 static int __kmp_release_adaptive_lock_with_checks(kmp_adaptive_lock_t *lck,
2169  kmp_int32 gtid) {
2170  char const *const func = "omp_unset_lock";
2171  KMP_MB(); /* in case another processor initialized lock */
2172  if (lck->lk.qlk.initialized != GET_QLK_PTR(lck)) {
2173  KMP_FATAL(LockIsUninitialized, func);
2174  }
2175  if (__kmp_get_queuing_lock_owner(GET_QLK_PTR(lck)) == -1) {
2176  KMP_FATAL(LockUnsettingFree, func);
2177  }
2178  if (__kmp_get_queuing_lock_owner(GET_QLK_PTR(lck)) != gtid) {
2179  KMP_FATAL(LockUnsettingSetByAnother, func);
2180  }
2181  lck->lk.qlk.owner_id = 0;
2182  __kmp_release_adaptive_lock(lck, gtid);
2183  return KMP_LOCK_RELEASED;
2184 }
2185 
2186 static void __kmp_init_adaptive_lock(kmp_adaptive_lock_t *lck) {
2187  __kmp_init_queuing_lock(GET_QLK_PTR(lck));
2188  lck->lk.adaptive.badness = 0;
2189  lck->lk.adaptive.acquire_attempts = 0; // nonSpeculativeAcquireAttempts = 0;
2190  lck->lk.adaptive.max_soft_retries =
2191  __kmp_adaptive_backoff_params.max_soft_retries;
2192  lck->lk.adaptive.max_badness = __kmp_adaptive_backoff_params.max_badness;
2193 #if KMP_DEBUG_ADAPTIVE_LOCKS
2194  __kmp_zero_speculative_stats(&lck->lk.adaptive);
2195 #endif
2196  KA_TRACE(1000, ("__kmp_init_adaptive_lock: lock %p initialized\n", lck));
2197 }
2198 
2199 static void __kmp_destroy_adaptive_lock(kmp_adaptive_lock_t *lck) {
2200 #if KMP_DEBUG_ADAPTIVE_LOCKS
2201  __kmp_accumulate_speculative_stats(&lck->lk.adaptive);
2202 #endif
2203  __kmp_destroy_queuing_lock(GET_QLK_PTR(lck));
2204  // Nothing needed for the speculative part.
2205 }
2206 
2207 static void __kmp_destroy_adaptive_lock_with_checks(kmp_adaptive_lock_t *lck) {
2208  char const *const func = "omp_destroy_lock";
2209  if (lck->lk.qlk.initialized != GET_QLK_PTR(lck)) {
2210  KMP_FATAL(LockIsUninitialized, func);
2211  }
2212  if (__kmp_get_queuing_lock_owner(GET_QLK_PTR(lck)) != -1) {
2213  KMP_FATAL(LockStillOwned, func);
2214  }
2215  __kmp_destroy_adaptive_lock(lck);
2216 }
2217 
2218 #endif // KMP_USE_ADAPTIVE_LOCKS
2219 
2220 /* ------------------------------------------------------------------------ */
2221 /* DRDPA ticket locks */
2222 /* "DRDPA" means Dynamically Reconfigurable Distributed Polling Area */
2223 
2224 static kmp_int32 __kmp_get_drdpa_lock_owner(kmp_drdpa_lock_t *lck) {
2225  return lck->lk.owner_id - 1;
2226 }
2227 
2228 static inline bool __kmp_is_drdpa_lock_nestable(kmp_drdpa_lock_t *lck) {
2229  return lck->lk.depth_locked != -1;
2230 }
2231 
2232 __forceinline static int
2233 __kmp_acquire_drdpa_lock_timed_template(kmp_drdpa_lock_t *lck, kmp_int32 gtid) {
2234  kmp_uint64 ticket = KMP_ATOMIC_INC(&lck->lk.next_ticket);
2235  kmp_uint64 mask = lck->lk.mask; // atomic load
2236  std::atomic<kmp_uint64> *polls = lck->lk.polls;
2237 
2238 #ifdef USE_LOCK_PROFILE
2239  if (polls[ticket & mask] != ticket)
2240  __kmp_printf("LOCK CONTENTION: %p\n", lck);
2241 /* else __kmp_printf( "." );*/
2242 #endif /* USE_LOCK_PROFILE */
2243 
2244  // Now spin-wait, but reload the polls pointer and mask, in case the
2245  // polling area has been reconfigured. Unless it is reconfigured, the
2246  // reloads stay in L1 cache and are cheap.
2247  //
2248  // Keep this code in sync with KMP_WAIT, in kmp_dispatch.cpp !!!
2249  // The current implementation of KMP_WAIT doesn't allow for mask
2250  // and poll to be re-read every spin iteration.
2251  kmp_uint32 spins;
2252  KMP_FSYNC_PREPARE(lck);
2253  KMP_INIT_YIELD(spins);
2254  while (polls[ticket & mask] < ticket) { // atomic load
2255  KMP_YIELD_OVERSUB_ELSE_SPIN(spins);
2256  // Re-read the mask and the poll pointer from the lock structure.
2257  //
2258  // Make certain that "mask" is read before "polls" !!!
2259  //
2260  // If another thread picks reconfigures the polling area and updates their
2261  // values, and we get the new value of mask and the old polls pointer, we
2262  // could access memory beyond the end of the old polling area.
2263  mask = lck->lk.mask; // atomic load
2264  polls = lck->lk.polls; // atomic load
2265  }
2266 
2267  // Critical section starts here
2268  KMP_FSYNC_ACQUIRED(lck);
2269  KA_TRACE(1000, ("__kmp_acquire_drdpa_lock: ticket #%lld acquired lock %p\n",
2270  ticket, lck));
2271  lck->lk.now_serving = ticket; // non-volatile store
2272 
2273  // Deallocate a garbage polling area if we know that we are the last
2274  // thread that could possibly access it.
2275  //
2276  // The >= check is in case __kmp_test_drdpa_lock() allocated the cleanup
2277  // ticket.
2278  if ((lck->lk.old_polls != NULL) && (ticket >= lck->lk.cleanup_ticket)) {
2279  __kmp_free(lck->lk.old_polls);
2280  lck->lk.old_polls = NULL;
2281  lck->lk.cleanup_ticket = 0;
2282  }
2283 
2284  // Check to see if we should reconfigure the polling area.
2285  // If there is still a garbage polling area to be deallocated from a
2286  // previous reconfiguration, let a later thread reconfigure it.
2287  if (lck->lk.old_polls == NULL) {
2288  bool reconfigure = false;
2289  std::atomic<kmp_uint64> *old_polls = polls;
2290  kmp_uint32 num_polls = TCR_4(lck->lk.num_polls);
2291 
2292  if (TCR_4(__kmp_nth) >
2293  (__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc)) {
2294  // We are in oversubscription mode. Contract the polling area
2295  // down to a single location, if that hasn't been done already.
2296  if (num_polls > 1) {
2297  reconfigure = true;
2298  num_polls = TCR_4(lck->lk.num_polls);
2299  mask = 0;
2300  num_polls = 1;
2301  polls = (std::atomic<kmp_uint64> *)__kmp_allocate(num_polls *
2302  sizeof(*polls));
2303  polls[0] = ticket;
2304  }
2305  } else {
2306  // We are in under/fully subscribed mode. Check the number of
2307  // threads waiting on the lock. The size of the polling area
2308  // should be at least the number of threads waiting.
2309  kmp_uint64 num_waiting = TCR_8(lck->lk.next_ticket) - ticket - 1;
2310  if (num_waiting > num_polls) {
2311  kmp_uint32 old_num_polls = num_polls;
2312  reconfigure = true;
2313  do {
2314  mask = (mask << 1) | 1;
2315  num_polls *= 2;
2316  } while (num_polls <= num_waiting);
2317 
2318  // Allocate the new polling area, and copy the relevant portion
2319  // of the old polling area to the new area. __kmp_allocate()
2320  // zeroes the memory it allocates, and most of the old area is
2321  // just zero padding, so we only copy the release counters.
2322  polls = (std::atomic<kmp_uint64> *)__kmp_allocate(num_polls *
2323  sizeof(*polls));
2324  kmp_uint32 i;
2325  for (i = 0; i < old_num_polls; i++) {
2326  polls[i].store(old_polls[i]);
2327  }
2328  }
2329  }
2330 
2331  if (reconfigure) {
2332  // Now write the updated fields back to the lock structure.
2333  //
2334  // Make certain that "polls" is written before "mask" !!!
2335  //
2336  // If another thread picks up the new value of mask and the old polls
2337  // pointer , it could access memory beyond the end of the old polling
2338  // area.
2339  //
2340  // On x86, we need memory fences.
2341  KA_TRACE(1000, ("__kmp_acquire_drdpa_lock: ticket #%lld reconfiguring "
2342  "lock %p to %d polls\n",
2343  ticket, lck, num_polls));
2344 
2345  lck->lk.old_polls = old_polls;
2346  lck->lk.polls = polls; // atomic store
2347 
2348  KMP_MB();
2349 
2350  lck->lk.num_polls = num_polls;
2351  lck->lk.mask = mask; // atomic store
2352 
2353  KMP_MB();
2354 
2355  // Only after the new polling area and mask have been flushed
2356  // to main memory can we update the cleanup ticket field.
2357  //
2358  // volatile load / non-volatile store
2359  lck->lk.cleanup_ticket = lck->lk.next_ticket;
2360  }
2361  }
2362  return KMP_LOCK_ACQUIRED_FIRST;
2363 }
2364 
2365 int __kmp_acquire_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid) {
2366  int retval = __kmp_acquire_drdpa_lock_timed_template(lck, gtid);
2367  ANNOTATE_DRDPA_ACQUIRED(lck);
2368  return retval;
2369 }
2370 
2371 static int __kmp_acquire_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck,
2372  kmp_int32 gtid) {
2373  char const *const func = "omp_set_lock";
2374  if (lck->lk.initialized != lck) {
2375  KMP_FATAL(LockIsUninitialized, func);
2376  }
2377  if (__kmp_is_drdpa_lock_nestable(lck)) {
2378  KMP_FATAL(LockNestableUsedAsSimple, func);
2379  }
2380  if ((gtid >= 0) && (__kmp_get_drdpa_lock_owner(lck) == gtid)) {
2381  KMP_FATAL(LockIsAlreadyOwned, func);
2382  }
2383 
2384  __kmp_acquire_drdpa_lock(lck, gtid);
2385 
2386  lck->lk.owner_id = gtid + 1;
2387  return KMP_LOCK_ACQUIRED_FIRST;
2388 }
2389 
2390 int __kmp_test_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid) {
2391  // First get a ticket, then read the polls pointer and the mask.
2392  // The polls pointer must be read before the mask!!! (See above)
2393  kmp_uint64 ticket = lck->lk.next_ticket; // atomic load
2394  std::atomic<kmp_uint64> *polls = lck->lk.polls;
2395  kmp_uint64 mask = lck->lk.mask; // atomic load
2396  if (polls[ticket & mask] == ticket) {
2397  kmp_uint64 next_ticket = ticket + 1;
2398  if (__kmp_atomic_compare_store_acq(&lck->lk.next_ticket, ticket,
2399  next_ticket)) {
2400  KMP_FSYNC_ACQUIRED(lck);
2401  KA_TRACE(1000, ("__kmp_test_drdpa_lock: ticket #%lld acquired lock %p\n",
2402  ticket, lck));
2403  lck->lk.now_serving = ticket; // non-volatile store
2404 
2405  // Since no threads are waiting, there is no possibility that we would
2406  // want to reconfigure the polling area. We might have the cleanup ticket
2407  // value (which says that it is now safe to deallocate old_polls), but
2408  // we'll let a later thread which calls __kmp_acquire_lock do that - this
2409  // routine isn't supposed to block, and we would risk blocks if we called
2410  // __kmp_free() to do the deallocation.
2411  return TRUE;
2412  }
2413  }
2414  return FALSE;
2415 }
2416 
2417 static int __kmp_test_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck,
2418  kmp_int32 gtid) {
2419  char const *const func = "omp_test_lock";
2420  if (lck->lk.initialized != lck) {
2421  KMP_FATAL(LockIsUninitialized, func);
2422  }
2423  if (__kmp_is_drdpa_lock_nestable(lck)) {
2424  KMP_FATAL(LockNestableUsedAsSimple, func);
2425  }
2426 
2427  int retval = __kmp_test_drdpa_lock(lck, gtid);
2428 
2429  if (retval) {
2430  lck->lk.owner_id = gtid + 1;
2431  }
2432  return retval;
2433 }
2434 
2435 int __kmp_release_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid) {
2436  // Read the ticket value from the lock data struct, then the polls pointer and
2437  // the mask. The polls pointer must be read before the mask!!! (See above)
2438  kmp_uint64 ticket = lck->lk.now_serving + 1; // non-atomic load
2439  std::atomic<kmp_uint64> *polls = lck->lk.polls; // atomic load
2440  kmp_uint64 mask = lck->lk.mask; // atomic load
2441  KA_TRACE(1000, ("__kmp_release_drdpa_lock: ticket #%lld released lock %p\n",
2442  ticket - 1, lck));
2443  KMP_FSYNC_RELEASING(lck);
2444  ANNOTATE_DRDPA_RELEASED(lck);
2445  polls[ticket & mask] = ticket; // atomic store
2446  return KMP_LOCK_RELEASED;
2447 }
2448 
2449 static int __kmp_release_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck,
2450  kmp_int32 gtid) {
2451  char const *const func = "omp_unset_lock";
2452  KMP_MB(); /* in case another processor initialized lock */
2453  if (lck->lk.initialized != lck) {
2454  KMP_FATAL(LockIsUninitialized, func);
2455  }
2456  if (__kmp_is_drdpa_lock_nestable(lck)) {
2457  KMP_FATAL(LockNestableUsedAsSimple, func);
2458  }
2459  if (__kmp_get_drdpa_lock_owner(lck) == -1) {
2460  KMP_FATAL(LockUnsettingFree, func);
2461  }
2462  if ((gtid >= 0) && (__kmp_get_drdpa_lock_owner(lck) >= 0) &&
2463  (__kmp_get_drdpa_lock_owner(lck) != gtid)) {
2464  KMP_FATAL(LockUnsettingSetByAnother, func);
2465  }
2466  lck->lk.owner_id = 0;
2467  return __kmp_release_drdpa_lock(lck, gtid);
2468 }
2469 
2470 void __kmp_init_drdpa_lock(kmp_drdpa_lock_t *lck) {
2471  lck->lk.location = NULL;
2472  lck->lk.mask = 0;
2473  lck->lk.num_polls = 1;
2474  lck->lk.polls = (std::atomic<kmp_uint64> *)__kmp_allocate(
2475  lck->lk.num_polls * sizeof(*(lck->lk.polls)));
2476  lck->lk.cleanup_ticket = 0;
2477  lck->lk.old_polls = NULL;
2478  lck->lk.next_ticket = 0;
2479  lck->lk.now_serving = 0;
2480  lck->lk.owner_id = 0; // no thread owns the lock.
2481  lck->lk.depth_locked = -1; // >= 0 for nestable locks, -1 for simple locks.
2482  lck->lk.initialized = lck;
2483 
2484  KA_TRACE(1000, ("__kmp_init_drdpa_lock: lock %p initialized\n", lck));
2485 }
2486 
2487 void __kmp_destroy_drdpa_lock(kmp_drdpa_lock_t *lck) {
2488  lck->lk.initialized = NULL;
2489  lck->lk.location = NULL;
2490  if (lck->lk.polls.load() != NULL) {
2491  __kmp_free(lck->lk.polls.load());
2492  lck->lk.polls = NULL;
2493  }
2494  if (lck->lk.old_polls != NULL) {
2495  __kmp_free(lck->lk.old_polls);
2496  lck->lk.old_polls = NULL;
2497  }
2498  lck->lk.mask = 0;
2499  lck->lk.num_polls = 0;
2500  lck->lk.cleanup_ticket = 0;
2501  lck->lk.next_ticket = 0;
2502  lck->lk.now_serving = 0;
2503  lck->lk.owner_id = 0;
2504  lck->lk.depth_locked = -1;
2505 }
2506 
2507 static void __kmp_destroy_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck) {
2508  char const *const func = "omp_destroy_lock";
2509  if (lck->lk.initialized != lck) {
2510  KMP_FATAL(LockIsUninitialized, func);
2511  }
2512  if (__kmp_is_drdpa_lock_nestable(lck)) {
2513  KMP_FATAL(LockNestableUsedAsSimple, func);
2514  }
2515  if (__kmp_get_drdpa_lock_owner(lck) != -1) {
2516  KMP_FATAL(LockStillOwned, func);
2517  }
2518  __kmp_destroy_drdpa_lock(lck);
2519 }
2520 
2521 // nested drdpa ticket locks
2522 
2523 int __kmp_acquire_nested_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid) {
2524  KMP_DEBUG_ASSERT(gtid >= 0);
2525 
2526  if (__kmp_get_drdpa_lock_owner(lck) == gtid) {
2527  lck->lk.depth_locked += 1;
2528  return KMP_LOCK_ACQUIRED_NEXT;
2529  } else {
2530  __kmp_acquire_drdpa_lock_timed_template(lck, gtid);
2531  ANNOTATE_DRDPA_ACQUIRED(lck);
2532  KMP_MB();
2533  lck->lk.depth_locked = 1;
2534  KMP_MB();
2535  lck->lk.owner_id = gtid + 1;
2536  return KMP_LOCK_ACQUIRED_FIRST;
2537  }
2538 }
2539 
2540 static void __kmp_acquire_nested_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck,
2541  kmp_int32 gtid) {
2542  char const *const func = "omp_set_nest_lock";
2543  if (lck->lk.initialized != lck) {
2544  KMP_FATAL(LockIsUninitialized, func);
2545  }
2546  if (!__kmp_is_drdpa_lock_nestable(lck)) {
2547  KMP_FATAL(LockSimpleUsedAsNestable, func);
2548  }
2549  __kmp_acquire_nested_drdpa_lock(lck, gtid);
2550 }
2551 
2552 int __kmp_test_nested_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid) {
2553  int retval;
2554 
2555  KMP_DEBUG_ASSERT(gtid >= 0);
2556 
2557  if (__kmp_get_drdpa_lock_owner(lck) == gtid) {
2558  retval = ++lck->lk.depth_locked;
2559  } else if (!__kmp_test_drdpa_lock(lck, gtid)) {
2560  retval = 0;
2561  } else {
2562  KMP_MB();
2563  retval = lck->lk.depth_locked = 1;
2564  KMP_MB();
2565  lck->lk.owner_id = gtid + 1;
2566  }
2567  return retval;
2568 }
2569 
2570 static int __kmp_test_nested_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck,
2571  kmp_int32 gtid) {
2572  char const *const func = "omp_test_nest_lock";
2573  if (lck->lk.initialized != lck) {
2574  KMP_FATAL(LockIsUninitialized, func);
2575  }
2576  if (!__kmp_is_drdpa_lock_nestable(lck)) {
2577  KMP_FATAL(LockSimpleUsedAsNestable, func);
2578  }
2579  return __kmp_test_nested_drdpa_lock(lck, gtid);
2580 }
2581 
2582 int __kmp_release_nested_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid) {
2583  KMP_DEBUG_ASSERT(gtid >= 0);
2584 
2585  KMP_MB();
2586  if (--(lck->lk.depth_locked) == 0) {
2587  KMP_MB();
2588  lck->lk.owner_id = 0;
2589  __kmp_release_drdpa_lock(lck, gtid);
2590  return KMP_LOCK_RELEASED;
2591  }
2592  return KMP_LOCK_STILL_HELD;
2593 }
2594 
2595 static int __kmp_release_nested_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck,
2596  kmp_int32 gtid) {
2597  char const *const func = "omp_unset_nest_lock";
2598  KMP_MB(); /* in case another processor initialized lock */
2599  if (lck->lk.initialized != lck) {
2600  KMP_FATAL(LockIsUninitialized, func);
2601  }
2602  if (!__kmp_is_drdpa_lock_nestable(lck)) {
2603  KMP_FATAL(LockSimpleUsedAsNestable, func);
2604  }
2605  if (__kmp_get_drdpa_lock_owner(lck) == -1) {
2606  KMP_FATAL(LockUnsettingFree, func);
2607  }
2608  if (__kmp_get_drdpa_lock_owner(lck) != gtid) {
2609  KMP_FATAL(LockUnsettingSetByAnother, func);
2610  }
2611  return __kmp_release_nested_drdpa_lock(lck, gtid);
2612 }
2613 
2614 void __kmp_init_nested_drdpa_lock(kmp_drdpa_lock_t *lck) {
2615  __kmp_init_drdpa_lock(lck);
2616  lck->lk.depth_locked = 0; // >= 0 for nestable locks, -1 for simple locks
2617 }
2618 
2619 void __kmp_destroy_nested_drdpa_lock(kmp_drdpa_lock_t *lck) {
2620  __kmp_destroy_drdpa_lock(lck);
2621  lck->lk.depth_locked = 0;
2622 }
2623 
2624 static void __kmp_destroy_nested_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck) {
2625  char const *const func = "omp_destroy_nest_lock";
2626  if (lck->lk.initialized != lck) {
2627  KMP_FATAL(LockIsUninitialized, func);
2628  }
2629  if (!__kmp_is_drdpa_lock_nestable(lck)) {
2630  KMP_FATAL(LockSimpleUsedAsNestable, func);
2631  }
2632  if (__kmp_get_drdpa_lock_owner(lck) != -1) {
2633  KMP_FATAL(LockStillOwned, func);
2634  }
2635  __kmp_destroy_nested_drdpa_lock(lck);
2636 }
2637 
2638 // access functions to fields which don't exist for all lock kinds.
2639 
2640 static const ident_t *__kmp_get_drdpa_lock_location(kmp_drdpa_lock_t *lck) {
2641  return lck->lk.location;
2642 }
2643 
2644 static void __kmp_set_drdpa_lock_location(kmp_drdpa_lock_t *lck,
2645  const ident_t *loc) {
2646  lck->lk.location = loc;
2647 }
2648 
2649 static kmp_lock_flags_t __kmp_get_drdpa_lock_flags(kmp_drdpa_lock_t *lck) {
2650  return lck->lk.flags;
2651 }
2652 
2653 static void __kmp_set_drdpa_lock_flags(kmp_drdpa_lock_t *lck,
2654  kmp_lock_flags_t flags) {
2655  lck->lk.flags = flags;
2656 }
2657 
2658 // Time stamp counter
2659 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
2660 #define __kmp_tsc() __kmp_hardware_timestamp()
2661 // Runtime's default backoff parameters
2662 kmp_backoff_t __kmp_spin_backoff_params = {1, 4096, 100};
2663 #else
2664 // Use nanoseconds for other platforms
2665 extern kmp_uint64 __kmp_now_nsec();
2666 kmp_backoff_t __kmp_spin_backoff_params = {1, 256, 100};
2667 #define __kmp_tsc() __kmp_now_nsec()
2668 #endif
2669 
2670 // A useful predicate for dealing with timestamps that may wrap.
2671 // Is a before b? Since the timestamps may wrap, this is asking whether it's
2672 // shorter to go clockwise from a to b around the clock-face, or anti-clockwise.
2673 // Times where going clockwise is less distance than going anti-clockwise
2674 // are in the future, others are in the past. e.g. a = MAX-1, b = MAX+1 (=0),
2675 // then a > b (true) does not mean a reached b; whereas signed(a) = -2,
2676 // signed(b) = 0 captures the actual difference
2677 static inline bool before(kmp_uint64 a, kmp_uint64 b) {
2678  return ((kmp_int64)b - (kmp_int64)a) > 0;
2679 }
2680 
2681 // Truncated binary exponential backoff function
2682 void __kmp_spin_backoff(kmp_backoff_t *boff) {
2683  // We could flatten this loop, but making it a nested loop gives better result
2684  kmp_uint32 i;
2685  for (i = boff->step; i > 0; i--) {
2686  kmp_uint64 goal = __kmp_tsc() + boff->min_tick;
2687  do {
2688  KMP_CPU_PAUSE();
2689  } while (before(__kmp_tsc(), goal));
2690  }
2691  boff->step = (boff->step << 1 | 1) & (boff->max_backoff - 1);
2692 }
2693 
2694 #if KMP_USE_DYNAMIC_LOCK
2695 
2696 // Direct lock initializers. It simply writes a tag to the low 8 bits of the
2697 // lock word.
2698 static void __kmp_init_direct_lock(kmp_dyna_lock_t *lck,
2699  kmp_dyna_lockseq_t seq) {
2700  TCW_4(*lck, KMP_GET_D_TAG(seq));
2701  KA_TRACE(
2702  20,
2703  ("__kmp_init_direct_lock: initialized direct lock with type#%d\n", seq));
2704 }
2705 
2706 #if KMP_USE_TSX
2707 
2708 // HLE lock functions - imported from the testbed runtime.
2709 #define HLE_ACQUIRE ".byte 0xf2;"
2710 #define HLE_RELEASE ".byte 0xf3;"
2711 
2712 static inline kmp_uint32 swap4(kmp_uint32 volatile *p, kmp_uint32 v) {
2713  __asm__ volatile(HLE_ACQUIRE "xchg %1,%0" : "+r"(v), "+m"(*p) : : "memory");
2714  return v;
2715 }
2716 
2717 static void __kmp_destroy_hle_lock(kmp_dyna_lock_t *lck) { TCW_4(*lck, 0); }
2718 
2719 static void __kmp_destroy_hle_lock_with_checks(kmp_dyna_lock_t *lck) {
2720  TCW_4(*lck, 0);
2721 }
2722 
2723 static void __kmp_acquire_hle_lock(kmp_dyna_lock_t *lck, kmp_int32 gtid) {
2724  // Use gtid for KMP_LOCK_BUSY if necessary
2725  if (swap4(lck, KMP_LOCK_BUSY(1, hle)) != KMP_LOCK_FREE(hle)) {
2726  int delay = 1;
2727  do {
2728  while (*(kmp_uint32 volatile *)lck != KMP_LOCK_FREE(hle)) {
2729  for (int i = delay; i != 0; --i)
2730  KMP_CPU_PAUSE();
2731  delay = ((delay << 1) | 1) & 7;
2732  }
2733  } while (swap4(lck, KMP_LOCK_BUSY(1, hle)) != KMP_LOCK_FREE(hle));
2734  }
2735 }
2736 
2737 static void __kmp_acquire_hle_lock_with_checks(kmp_dyna_lock_t *lck,
2738  kmp_int32 gtid) {
2739  __kmp_acquire_hle_lock(lck, gtid); // TODO: add checks
2740 }
2741 
2742 static int __kmp_release_hle_lock(kmp_dyna_lock_t *lck, kmp_int32 gtid) {
2743  __asm__ volatile(HLE_RELEASE "movl %1,%0"
2744  : "=m"(*lck)
2745  : "r"(KMP_LOCK_FREE(hle))
2746  : "memory");
2747  return KMP_LOCK_RELEASED;
2748 }
2749 
2750 static int __kmp_release_hle_lock_with_checks(kmp_dyna_lock_t *lck,
2751  kmp_int32 gtid) {
2752  return __kmp_release_hle_lock(lck, gtid); // TODO: add checks
2753 }
2754 
2755 static int __kmp_test_hle_lock(kmp_dyna_lock_t *lck, kmp_int32 gtid) {
2756  return swap4(lck, KMP_LOCK_BUSY(1, hle)) == KMP_LOCK_FREE(hle);
2757 }
2758 
2759 static int __kmp_test_hle_lock_with_checks(kmp_dyna_lock_t *lck,
2760  kmp_int32 gtid) {
2761  return __kmp_test_hle_lock(lck, gtid); // TODO: add checks
2762 }
2763 
2764 static void __kmp_init_rtm_lock(kmp_queuing_lock_t *lck) {
2765  __kmp_init_queuing_lock(lck);
2766 }
2767 
2768 static void __kmp_destroy_rtm_lock(kmp_queuing_lock_t *lck) {
2769  __kmp_destroy_queuing_lock(lck);
2770 }
2771 
2772 static void __kmp_destroy_rtm_lock_with_checks(kmp_queuing_lock_t *lck) {
2773  __kmp_destroy_queuing_lock_with_checks(lck);
2774 }
2775 
2776 static void __kmp_acquire_rtm_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) {
2777  unsigned retries = 3, status;
2778  do {
2779  status = _xbegin();
2780  if (status == _XBEGIN_STARTED) {
2781  if (__kmp_is_unlocked_queuing_lock(lck))
2782  return;
2783  _xabort(0xff);
2784  }
2785  if ((status & _XABORT_EXPLICIT) && _XABORT_CODE(status) == 0xff) {
2786  // Wait until lock becomes free
2787  while (!__kmp_is_unlocked_queuing_lock(lck)) {
2788  KMP_YIELD(TRUE);
2789  }
2790  } else if (!(status & _XABORT_RETRY))
2791  break;
2792  } while (retries--);
2793 
2794  // Fall-back non-speculative lock (xchg)
2795  __kmp_acquire_queuing_lock(lck, gtid);
2796 }
2797 
2798 static void __kmp_acquire_rtm_lock_with_checks(kmp_queuing_lock_t *lck,
2799  kmp_int32 gtid) {
2800  __kmp_acquire_rtm_lock(lck, gtid);
2801 }
2802 
2803 static int __kmp_release_rtm_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) {
2804  if (__kmp_is_unlocked_queuing_lock(lck)) {
2805  // Releasing from speculation
2806  _xend();
2807  } else {
2808  // Releasing from a real lock
2809  __kmp_release_queuing_lock(lck, gtid);
2810  }
2811  return KMP_LOCK_RELEASED;
2812 }
2813 
2814 static int __kmp_release_rtm_lock_with_checks(kmp_queuing_lock_t *lck,
2815  kmp_int32 gtid) {
2816  return __kmp_release_rtm_lock(lck, gtid);
2817 }
2818 
2819 static int __kmp_test_rtm_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) {
2820  unsigned retries = 3, status;
2821  do {
2822  status = _xbegin();
2823  if (status == _XBEGIN_STARTED && __kmp_is_unlocked_queuing_lock(lck)) {
2824  return 1;
2825  }
2826  if (!(status & _XABORT_RETRY))
2827  break;
2828  } while (retries--);
2829 
2830  return (__kmp_is_unlocked_queuing_lock(lck)) ? 1 : 0;
2831 }
2832 
2833 static int __kmp_test_rtm_lock_with_checks(kmp_queuing_lock_t *lck,
2834  kmp_int32 gtid) {
2835  return __kmp_test_rtm_lock(lck, gtid);
2836 }
2837 
2838 #endif // KMP_USE_TSX
2839 
2840 // Entry functions for indirect locks (first element of direct lock jump tables)
2841 static void __kmp_init_indirect_lock(kmp_dyna_lock_t *l,
2842  kmp_dyna_lockseq_t tag);
2843 static void __kmp_destroy_indirect_lock(kmp_dyna_lock_t *lock);
2844 static int __kmp_set_indirect_lock(kmp_dyna_lock_t *lock, kmp_int32);
2845 static int __kmp_unset_indirect_lock(kmp_dyna_lock_t *lock, kmp_int32);
2846 static int __kmp_test_indirect_lock(kmp_dyna_lock_t *lock, kmp_int32);
2847 static int __kmp_set_indirect_lock_with_checks(kmp_dyna_lock_t *lock,
2848  kmp_int32);
2849 static int __kmp_unset_indirect_lock_with_checks(kmp_dyna_lock_t *lock,
2850  kmp_int32);
2851 static int __kmp_test_indirect_lock_with_checks(kmp_dyna_lock_t *lock,
2852  kmp_int32);
2853 
2854 // Lock function definitions for the union parameter type
2855 #define KMP_FOREACH_LOCK_KIND(m, a) m(ticket, a) m(queuing, a) m(drdpa, a)
2856 
2857 #define expand1(lk, op) \
2858  static void __kmp_##op##_##lk##_##lock(kmp_user_lock_p lock) { \
2859  __kmp_##op##_##lk##_##lock(&lock->lk); \
2860  }
2861 #define expand2(lk, op) \
2862  static int __kmp_##op##_##lk##_##lock(kmp_user_lock_p lock, \
2863  kmp_int32 gtid) { \
2864  return __kmp_##op##_##lk##_##lock(&lock->lk, gtid); \
2865  }
2866 #define expand3(lk, op) \
2867  static void __kmp_set_##lk##_##lock_flags(kmp_user_lock_p lock, \
2868  kmp_lock_flags_t flags) { \
2869  __kmp_set_##lk##_lock_flags(&lock->lk, flags); \
2870  }
2871 #define expand4(lk, op) \
2872  static void __kmp_set_##lk##_##lock_location(kmp_user_lock_p lock, \
2873  const ident_t *loc) { \
2874  __kmp_set_##lk##_lock_location(&lock->lk, loc); \
2875  }
2876 
2877 KMP_FOREACH_LOCK_KIND(expand1, init)
2878 KMP_FOREACH_LOCK_KIND(expand1, init_nested)
2879 KMP_FOREACH_LOCK_KIND(expand1, destroy)
2880 KMP_FOREACH_LOCK_KIND(expand1, destroy_nested)
2881 KMP_FOREACH_LOCK_KIND(expand2, acquire)
2882 KMP_FOREACH_LOCK_KIND(expand2, acquire_nested)
2883 KMP_FOREACH_LOCK_KIND(expand2, release)
2884 KMP_FOREACH_LOCK_KIND(expand2, release_nested)
2885 KMP_FOREACH_LOCK_KIND(expand2, test)
2886 KMP_FOREACH_LOCK_KIND(expand2, test_nested)
2887 KMP_FOREACH_LOCK_KIND(expand3, )
2888 KMP_FOREACH_LOCK_KIND(expand4, )
2889 
2890 #undef expand1
2891 #undef expand2
2892 #undef expand3
2893 #undef expand4
2894 
2895 // Jump tables for the indirect lock functions
2896 // Only fill in the odd entries, that avoids the need to shift out the low bit
2897 
2898 // init functions
2899 #define expand(l, op) 0, __kmp_init_direct_lock,
2900 void (*__kmp_direct_init[])(kmp_dyna_lock_t *, kmp_dyna_lockseq_t) = {
2901  __kmp_init_indirect_lock, 0, KMP_FOREACH_D_LOCK(expand, init)};
2902 #undef expand
2903 
2904 // destroy functions
2905 #define expand(l, op) 0, (void (*)(kmp_dyna_lock_t *))__kmp_##op##_##l##_lock,
2906 static void (*direct_destroy[])(kmp_dyna_lock_t *) = {
2907  __kmp_destroy_indirect_lock, 0, KMP_FOREACH_D_LOCK(expand, destroy)};
2908 #undef expand
2909 #define expand(l, op) \
2910  0, (void (*)(kmp_dyna_lock_t *))__kmp_destroy_##l##_lock_with_checks,
2911 static void (*direct_destroy_check[])(kmp_dyna_lock_t *) = {
2912  __kmp_destroy_indirect_lock, 0, KMP_FOREACH_D_LOCK(expand, destroy)};
2913 #undef expand
2914 
2915 // set/acquire functions
2916 #define expand(l, op) \
2917  0, (int (*)(kmp_dyna_lock_t *, kmp_int32))__kmp_##op##_##l##_lock,
2918 static int (*direct_set[])(kmp_dyna_lock_t *, kmp_int32) = {
2919  __kmp_set_indirect_lock, 0, KMP_FOREACH_D_LOCK(expand, acquire)};
2920 #undef expand
2921 #define expand(l, op) \
2922  0, (int (*)(kmp_dyna_lock_t *, kmp_int32))__kmp_##op##_##l##_lock_with_checks,
2923 static int (*direct_set_check[])(kmp_dyna_lock_t *, kmp_int32) = {
2924  __kmp_set_indirect_lock_with_checks, 0,
2925  KMP_FOREACH_D_LOCK(expand, acquire)};
2926 #undef expand
2927 
2928 // unset/release and test functions
2929 #define expand(l, op) \
2930  0, (int (*)(kmp_dyna_lock_t *, kmp_int32))__kmp_##op##_##l##_lock,
2931 static int (*direct_unset[])(kmp_dyna_lock_t *, kmp_int32) = {
2932  __kmp_unset_indirect_lock, 0, KMP_FOREACH_D_LOCK(expand, release)};
2933 static int (*direct_test[])(kmp_dyna_lock_t *, kmp_int32) = {
2934  __kmp_test_indirect_lock, 0, KMP_FOREACH_D_LOCK(expand, test)};
2935 #undef expand
2936 #define expand(l, op) \
2937  0, (int (*)(kmp_dyna_lock_t *, kmp_int32))__kmp_##op##_##l##_lock_with_checks,
2938 static int (*direct_unset_check[])(kmp_dyna_lock_t *, kmp_int32) = {
2939  __kmp_unset_indirect_lock_with_checks, 0,
2940  KMP_FOREACH_D_LOCK(expand, release)};
2941 static int (*direct_test_check[])(kmp_dyna_lock_t *, kmp_int32) = {
2942  __kmp_test_indirect_lock_with_checks, 0, KMP_FOREACH_D_LOCK(expand, test)};
2943 #undef expand
2944 
2945 // Exposes only one set of jump tables (*lock or *lock_with_checks).
2946 void (*(*__kmp_direct_destroy))(kmp_dyna_lock_t *) = 0;
2947 int (*(*__kmp_direct_set))(kmp_dyna_lock_t *, kmp_int32) = 0;
2948 int (*(*__kmp_direct_unset))(kmp_dyna_lock_t *, kmp_int32) = 0;
2949 int (*(*__kmp_direct_test))(kmp_dyna_lock_t *, kmp_int32) = 0;
2950 
2951 // Jump tables for the indirect lock functions
2952 #define expand(l, op) (void (*)(kmp_user_lock_p)) __kmp_##op##_##l##_##lock,
2953 void (*__kmp_indirect_init[])(kmp_user_lock_p) = {
2954  KMP_FOREACH_I_LOCK(expand, init)};
2955 #undef expand
2956 
2957 #define expand(l, op) (void (*)(kmp_user_lock_p)) __kmp_##op##_##l##_##lock,
2958 static void (*indirect_destroy[])(kmp_user_lock_p) = {
2959  KMP_FOREACH_I_LOCK(expand, destroy)};
2960 #undef expand
2961 #define expand(l, op) \
2962  (void (*)(kmp_user_lock_p)) __kmp_##op##_##l##_##lock_with_checks,
2963 static void (*indirect_destroy_check[])(kmp_user_lock_p) = {
2964  KMP_FOREACH_I_LOCK(expand, destroy)};
2965 #undef expand
2966 
2967 // set/acquire functions
2968 #define expand(l, op) \
2969  (int (*)(kmp_user_lock_p, kmp_int32)) __kmp_##op##_##l##_##lock,
2970 static int (*indirect_set[])(kmp_user_lock_p,
2971  kmp_int32) = {KMP_FOREACH_I_LOCK(expand, acquire)};
2972 #undef expand
2973 #define expand(l, op) \
2974  (int (*)(kmp_user_lock_p, kmp_int32)) __kmp_##op##_##l##_##lock_with_checks,
2975 static int (*indirect_set_check[])(kmp_user_lock_p, kmp_int32) = {
2976  KMP_FOREACH_I_LOCK(expand, acquire)};
2977 #undef expand
2978 
2979 // unset/release and test functions
2980 #define expand(l, op) \
2981  (int (*)(kmp_user_lock_p, kmp_int32)) __kmp_##op##_##l##_##lock,
2982 static int (*indirect_unset[])(kmp_user_lock_p, kmp_int32) = {
2983  KMP_FOREACH_I_LOCK(expand, release)};
2984 static int (*indirect_test[])(kmp_user_lock_p,
2985  kmp_int32) = {KMP_FOREACH_I_LOCK(expand, test)};
2986 #undef expand
2987 #define expand(l, op) \
2988  (int (*)(kmp_user_lock_p, kmp_int32)) __kmp_##op##_##l##_##lock_with_checks,
2989 static int (*indirect_unset_check[])(kmp_user_lock_p, kmp_int32) = {
2990  KMP_FOREACH_I_LOCK(expand, release)};
2991 static int (*indirect_test_check[])(kmp_user_lock_p, kmp_int32) = {
2992  KMP_FOREACH_I_LOCK(expand, test)};
2993 #undef expand
2994 
2995 // Exposes only one jump tables (*lock or *lock_with_checks).
2996 void (*(*__kmp_indirect_destroy))(kmp_user_lock_p) = 0;
2997 int (*(*__kmp_indirect_set))(kmp_user_lock_p, kmp_int32) = 0;
2998 int (*(*__kmp_indirect_unset))(kmp_user_lock_p, kmp_int32) = 0;
2999 int (*(*__kmp_indirect_test))(kmp_user_lock_p, kmp_int32) = 0;
3000 
3001 // Lock index table.
3002 kmp_indirect_lock_table_t __kmp_i_lock_table;
3003 
3004 // Size of indirect locks.
3005 static kmp_uint32 __kmp_indirect_lock_size[KMP_NUM_I_LOCKS] = {0};
3006 
3007 // Jump tables for lock accessor/modifier.
3008 void (*__kmp_indirect_set_location[KMP_NUM_I_LOCKS])(kmp_user_lock_p,
3009  const ident_t *) = {0};
3010 void (*__kmp_indirect_set_flags[KMP_NUM_I_LOCKS])(kmp_user_lock_p,
3011  kmp_lock_flags_t) = {0};
3012 const ident_t *(*__kmp_indirect_get_location[KMP_NUM_I_LOCKS])(
3013  kmp_user_lock_p) = {0};
3014 kmp_lock_flags_t (*__kmp_indirect_get_flags[KMP_NUM_I_LOCKS])(
3015  kmp_user_lock_p) = {0};
3016 
3017 // Use different lock pools for different lock types.
3018 static kmp_indirect_lock_t *__kmp_indirect_lock_pool[KMP_NUM_I_LOCKS] = {0};
3019 
3020 // User lock allocator for dynamically dispatched indirect locks. Every entry of
3021 // the indirect lock table holds the address and type of the allocated indrect
3022 // lock (kmp_indirect_lock_t), and the size of the table doubles when it is
3023 // full. A destroyed indirect lock object is returned to the reusable pool of
3024 // locks, unique to each lock type.
3025 kmp_indirect_lock_t *__kmp_allocate_indirect_lock(void **user_lock,
3026  kmp_int32 gtid,
3027  kmp_indirect_locktag_t tag) {
3028  kmp_indirect_lock_t *lck;
3029  kmp_lock_index_t idx;
3030 
3031  __kmp_acquire_lock(&__kmp_global_lock, gtid);
3032 
3033  if (__kmp_indirect_lock_pool[tag] != NULL) {
3034  // Reuse the allocated and destroyed lock object
3035  lck = __kmp_indirect_lock_pool[tag];
3036  if (OMP_LOCK_T_SIZE < sizeof(void *))
3037  idx = lck->lock->pool.index;
3038  __kmp_indirect_lock_pool[tag] = (kmp_indirect_lock_t *)lck->lock->pool.next;
3039  KA_TRACE(20, ("__kmp_allocate_indirect_lock: reusing an existing lock %p\n",
3040  lck));
3041  } else {
3042  idx = __kmp_i_lock_table.next;
3043  // Check capacity and double the size if it is full
3044  if (idx == __kmp_i_lock_table.size) {
3045  // Double up the space for block pointers
3046  int row = __kmp_i_lock_table.size / KMP_I_LOCK_CHUNK;
3047  kmp_indirect_lock_t **new_table = (kmp_indirect_lock_t **)__kmp_allocate(
3048  2 * row * sizeof(kmp_indirect_lock_t *));
3049  KMP_MEMCPY(new_table, __kmp_i_lock_table.table,
3050  row * sizeof(kmp_indirect_lock_t *));
3051  kmp_indirect_lock_t **old_table = __kmp_i_lock_table.table;
3052  __kmp_i_lock_table.table = new_table;
3053  __kmp_free(old_table);
3054  // Allocate new objects in the new blocks
3055  for (int i = row; i < 2 * row; ++i)
3056  *(__kmp_i_lock_table.table + i) = (kmp_indirect_lock_t *)__kmp_allocate(
3057  KMP_I_LOCK_CHUNK * sizeof(kmp_indirect_lock_t));
3058  __kmp_i_lock_table.size = 2 * idx;
3059  }
3060  __kmp_i_lock_table.next++;
3061  lck = KMP_GET_I_LOCK(idx);
3062  // Allocate a new base lock object
3063  lck->lock = (kmp_user_lock_p)__kmp_allocate(__kmp_indirect_lock_size[tag]);
3064  KA_TRACE(20,
3065  ("__kmp_allocate_indirect_lock: allocated a new lock %p\n", lck));
3066  }
3067 
3068  __kmp_release_lock(&__kmp_global_lock, gtid);
3069 
3070  lck->type = tag;
3071 
3072  if (OMP_LOCK_T_SIZE < sizeof(void *)) {
3073  *((kmp_lock_index_t *)user_lock) = idx
3074  << 1; // indirect lock word must be even
3075  } else {
3076  *((kmp_indirect_lock_t **)user_lock) = lck;
3077  }
3078 
3079  return lck;
3080 }
3081 
3082 // User lock lookup for dynamically dispatched locks.
3083 static __forceinline kmp_indirect_lock_t *
3084 __kmp_lookup_indirect_lock(void **user_lock, const char *func) {
3085  if (__kmp_env_consistency_check) {
3086  kmp_indirect_lock_t *lck = NULL;
3087  if (user_lock == NULL) {
3088  KMP_FATAL(LockIsUninitialized, func);
3089  }
3090  if (OMP_LOCK_T_SIZE < sizeof(void *)) {
3091  kmp_lock_index_t idx = KMP_EXTRACT_I_INDEX(user_lock);
3092  if (idx >= __kmp_i_lock_table.size) {
3093  KMP_FATAL(LockIsUninitialized, func);
3094  }
3095  lck = KMP_GET_I_LOCK(idx);
3096  } else {
3097  lck = *((kmp_indirect_lock_t **)user_lock);
3098  }
3099  if (lck == NULL) {
3100  KMP_FATAL(LockIsUninitialized, func);
3101  }
3102  return lck;
3103  } else {
3104  if (OMP_LOCK_T_SIZE < sizeof(void *)) {
3105  return KMP_GET_I_LOCK(KMP_EXTRACT_I_INDEX(user_lock));
3106  } else {
3107  return *((kmp_indirect_lock_t **)user_lock);
3108  }
3109  }
3110 }
3111 
3112 static void __kmp_init_indirect_lock(kmp_dyna_lock_t *lock,
3113  kmp_dyna_lockseq_t seq) {
3114 #if KMP_USE_ADAPTIVE_LOCKS
3115  if (seq == lockseq_adaptive && !__kmp_cpuinfo.rtm) {
3116  KMP_WARNING(AdaptiveNotSupported, "kmp_lockseq_t", "adaptive");
3117  seq = lockseq_queuing;
3118  }
3119 #endif
3120 #if KMP_USE_TSX
3121  if (seq == lockseq_rtm && !__kmp_cpuinfo.rtm) {
3122  seq = lockseq_queuing;
3123  }
3124 #endif
3125  kmp_indirect_locktag_t tag = KMP_GET_I_TAG(seq);
3126  kmp_indirect_lock_t *l =
3127  __kmp_allocate_indirect_lock((void **)lock, __kmp_entry_gtid(), tag);
3128  KMP_I_LOCK_FUNC(l, init)(l->lock);
3129  KA_TRACE(
3130  20, ("__kmp_init_indirect_lock: initialized indirect lock with type#%d\n",
3131  seq));
3132 }
3133 
3134 static void __kmp_destroy_indirect_lock(kmp_dyna_lock_t *lock) {
3135  kmp_uint32 gtid = __kmp_entry_gtid();
3136  kmp_indirect_lock_t *l =
3137  __kmp_lookup_indirect_lock((void **)lock, "omp_destroy_lock");
3138  KMP_I_LOCK_FUNC(l, destroy)(l->lock);
3139  kmp_indirect_locktag_t tag = l->type;
3140 
3141  __kmp_acquire_lock(&__kmp_global_lock, gtid);
3142 
3143  // Use the base lock's space to keep the pool chain.
3144  l->lock->pool.next = (kmp_user_lock_p)__kmp_indirect_lock_pool[tag];
3145  if (OMP_LOCK_T_SIZE < sizeof(void *)) {
3146  l->lock->pool.index = KMP_EXTRACT_I_INDEX(lock);
3147  }
3148  __kmp_indirect_lock_pool[tag] = l;
3149 
3150  __kmp_release_lock(&__kmp_global_lock, gtid);
3151 }
3152 
3153 static int __kmp_set_indirect_lock(kmp_dyna_lock_t *lock, kmp_int32 gtid) {
3154  kmp_indirect_lock_t *l = KMP_LOOKUP_I_LOCK(lock);
3155  return KMP_I_LOCK_FUNC(l, set)(l->lock, gtid);
3156 }
3157 
3158 static int __kmp_unset_indirect_lock(kmp_dyna_lock_t *lock, kmp_int32 gtid) {
3159  kmp_indirect_lock_t *l = KMP_LOOKUP_I_LOCK(lock);
3160  return KMP_I_LOCK_FUNC(l, unset)(l->lock, gtid);
3161 }
3162 
3163 static int __kmp_test_indirect_lock(kmp_dyna_lock_t *lock, kmp_int32 gtid) {
3164  kmp_indirect_lock_t *l = KMP_LOOKUP_I_LOCK(lock);
3165  return KMP_I_LOCK_FUNC(l, test)(l->lock, gtid);
3166 }
3167 
3168 static int __kmp_set_indirect_lock_with_checks(kmp_dyna_lock_t *lock,
3169  kmp_int32 gtid) {
3170  kmp_indirect_lock_t *l =
3171  __kmp_lookup_indirect_lock((void **)lock, "omp_set_lock");
3172  return KMP_I_LOCK_FUNC(l, set)(l->lock, gtid);
3173 }
3174 
3175 static int __kmp_unset_indirect_lock_with_checks(kmp_dyna_lock_t *lock,
3176  kmp_int32 gtid) {
3177  kmp_indirect_lock_t *l =
3178  __kmp_lookup_indirect_lock((void **)lock, "omp_unset_lock");
3179  return KMP_I_LOCK_FUNC(l, unset)(l->lock, gtid);
3180 }
3181 
3182 static int __kmp_test_indirect_lock_with_checks(kmp_dyna_lock_t *lock,
3183  kmp_int32 gtid) {
3184  kmp_indirect_lock_t *l =
3185  __kmp_lookup_indirect_lock((void **)lock, "omp_test_lock");
3186  return KMP_I_LOCK_FUNC(l, test)(l->lock, gtid);
3187 }
3188 
3189 kmp_dyna_lockseq_t __kmp_user_lock_seq = lockseq_queuing;
3190 
3191 // This is used only in kmp_error.cpp when consistency checking is on.
3192 kmp_int32 __kmp_get_user_lock_owner(kmp_user_lock_p lck, kmp_uint32 seq) {
3193  switch (seq) {
3194  case lockseq_tas:
3195  case lockseq_nested_tas:
3196  return __kmp_get_tas_lock_owner((kmp_tas_lock_t *)lck);
3197 #if KMP_USE_FUTEX
3198  case lockseq_futex:
3199  case lockseq_nested_futex:
3200  return __kmp_get_futex_lock_owner((kmp_futex_lock_t *)lck);
3201 #endif
3202  case lockseq_ticket:
3203  case lockseq_nested_ticket:
3204  return __kmp_get_ticket_lock_owner((kmp_ticket_lock_t *)lck);
3205  case lockseq_queuing:
3206  case lockseq_nested_queuing:
3207 #if KMP_USE_ADAPTIVE_LOCKS
3208  case lockseq_adaptive:
3209 #endif
3210  return __kmp_get_queuing_lock_owner((kmp_queuing_lock_t *)lck);
3211  case lockseq_drdpa:
3212  case lockseq_nested_drdpa:
3213  return __kmp_get_drdpa_lock_owner((kmp_drdpa_lock_t *)lck);
3214  default:
3215  return 0;
3216  }
3217 }
3218 
3219 // Initializes data for dynamic user locks.
3220 void __kmp_init_dynamic_user_locks() {
3221  // Initialize jump table for the lock functions
3222  if (__kmp_env_consistency_check) {
3223  __kmp_direct_set = direct_set_check;
3224  __kmp_direct_unset = direct_unset_check;
3225  __kmp_direct_test = direct_test_check;
3226  __kmp_direct_destroy = direct_destroy_check;
3227  __kmp_indirect_set = indirect_set_check;
3228  __kmp_indirect_unset = indirect_unset_check;
3229  __kmp_indirect_test = indirect_test_check;
3230  __kmp_indirect_destroy = indirect_destroy_check;
3231  } else {
3232  __kmp_direct_set = direct_set;
3233  __kmp_direct_unset = direct_unset;
3234  __kmp_direct_test = direct_test;
3235  __kmp_direct_destroy = direct_destroy;
3236  __kmp_indirect_set = indirect_set;
3237  __kmp_indirect_unset = indirect_unset;
3238  __kmp_indirect_test = indirect_test;
3239  __kmp_indirect_destroy = indirect_destroy;
3240  }
3241  // If the user locks have already been initialized, then return. Allow the
3242  // switch between different KMP_CONSISTENCY_CHECK values, but do not allocate
3243  // new lock tables if they have already been allocated.
3244  if (__kmp_init_user_locks)
3245  return;
3246 
3247  // Initialize lock index table
3248  __kmp_i_lock_table.size = KMP_I_LOCK_CHUNK;
3249  __kmp_i_lock_table.table =
3250  (kmp_indirect_lock_t **)__kmp_allocate(sizeof(kmp_indirect_lock_t *));
3251  *(__kmp_i_lock_table.table) = (kmp_indirect_lock_t *)__kmp_allocate(
3252  KMP_I_LOCK_CHUNK * sizeof(kmp_indirect_lock_t));
3253  __kmp_i_lock_table.next = 0;
3254 
3255  // Indirect lock size
3256  __kmp_indirect_lock_size[locktag_ticket] = sizeof(kmp_ticket_lock_t);
3257  __kmp_indirect_lock_size[locktag_queuing] = sizeof(kmp_queuing_lock_t);
3258 #if KMP_USE_ADAPTIVE_LOCKS
3259  __kmp_indirect_lock_size[locktag_adaptive] = sizeof(kmp_adaptive_lock_t);
3260 #endif
3261  __kmp_indirect_lock_size[locktag_drdpa] = sizeof(kmp_drdpa_lock_t);
3262 #if KMP_USE_TSX
3263  __kmp_indirect_lock_size[locktag_rtm] = sizeof(kmp_queuing_lock_t);
3264 #endif
3265  __kmp_indirect_lock_size[locktag_nested_tas] = sizeof(kmp_tas_lock_t);
3266 #if KMP_USE_FUTEX
3267  __kmp_indirect_lock_size[locktag_nested_futex] = sizeof(kmp_futex_lock_t);
3268 #endif
3269  __kmp_indirect_lock_size[locktag_nested_ticket] = sizeof(kmp_ticket_lock_t);
3270  __kmp_indirect_lock_size[locktag_nested_queuing] = sizeof(kmp_queuing_lock_t);
3271  __kmp_indirect_lock_size[locktag_nested_drdpa] = sizeof(kmp_drdpa_lock_t);
3272 
3273 // Initialize lock accessor/modifier
3274 #define fill_jumps(table, expand, sep) \
3275  { \
3276  table[locktag##sep##ticket] = expand(ticket); \
3277  table[locktag##sep##queuing] = expand(queuing); \
3278  table[locktag##sep##drdpa] = expand(drdpa); \
3279  }
3280 
3281 #if KMP_USE_ADAPTIVE_LOCKS
3282 #define fill_table(table, expand) \
3283  { \
3284  fill_jumps(table, expand, _); \
3285  table[locktag_adaptive] = expand(queuing); \
3286  fill_jumps(table, expand, _nested_); \
3287  }
3288 #else
3289 #define fill_table(table, expand) \
3290  { \
3291  fill_jumps(table, expand, _); \
3292  fill_jumps(table, expand, _nested_); \
3293  }
3294 #endif // KMP_USE_ADAPTIVE_LOCKS
3295 
3296 #define expand(l) \
3297  (void (*)(kmp_user_lock_p, const ident_t *)) __kmp_set_##l##_lock_location
3298  fill_table(__kmp_indirect_set_location, expand);
3299 #undef expand
3300 #define expand(l) \
3301  (void (*)(kmp_user_lock_p, kmp_lock_flags_t)) __kmp_set_##l##_lock_flags
3302  fill_table(__kmp_indirect_set_flags, expand);
3303 #undef expand
3304 #define expand(l) \
3305  (const ident_t *(*)(kmp_user_lock_p)) __kmp_get_##l##_lock_location
3306  fill_table(__kmp_indirect_get_location, expand);
3307 #undef expand
3308 #define expand(l) \
3309  (kmp_lock_flags_t(*)(kmp_user_lock_p)) __kmp_get_##l##_lock_flags
3310  fill_table(__kmp_indirect_get_flags, expand);
3311 #undef expand
3312 
3313  __kmp_init_user_locks = TRUE;
3314 }
3315 
3316 // Clean up the lock table.
3317 void __kmp_cleanup_indirect_user_locks() {
3318  kmp_lock_index_t i;
3319  int k;
3320 
3321  // Clean up locks in the pools first (they were already destroyed before going
3322  // into the pools).
3323  for (k = 0; k < KMP_NUM_I_LOCKS; ++k) {
3324  kmp_indirect_lock_t *l = __kmp_indirect_lock_pool[k];
3325  while (l != NULL) {
3326  kmp_indirect_lock_t *ll = l;
3327  l = (kmp_indirect_lock_t *)l->lock->pool.next;
3328  KA_TRACE(20, ("__kmp_cleanup_indirect_user_locks: freeing %p from pool\n",
3329  ll));
3330  __kmp_free(ll->lock);
3331  ll->lock = NULL;
3332  }
3333  __kmp_indirect_lock_pool[k] = NULL;
3334  }
3335  // Clean up the remaining undestroyed locks.
3336  for (i = 0; i < __kmp_i_lock_table.next; i++) {
3337  kmp_indirect_lock_t *l = KMP_GET_I_LOCK(i);
3338  if (l->lock != NULL) {
3339  // Locks not destroyed explicitly need to be destroyed here.
3340  KMP_I_LOCK_FUNC(l, destroy)(l->lock);
3341  KA_TRACE(
3342  20,
3343  ("__kmp_cleanup_indirect_user_locks: destroy/freeing %p from table\n",
3344  l));
3345  __kmp_free(l->lock);
3346  }
3347  }
3348  // Free the table
3349  for (i = 0; i < __kmp_i_lock_table.size / KMP_I_LOCK_CHUNK; i++)
3350  __kmp_free(__kmp_i_lock_table.table[i]);
3351  __kmp_free(__kmp_i_lock_table.table);
3352 
3353  __kmp_init_user_locks = FALSE;
3354 }
3355 
3356 enum kmp_lock_kind __kmp_user_lock_kind = lk_default;
3357 int __kmp_num_locks_in_block = 1; // FIXME - tune this value
3358 
3359 #else // KMP_USE_DYNAMIC_LOCK
3360 
3361 static void __kmp_init_tas_lock_with_checks(kmp_tas_lock_t *lck) {
3362  __kmp_init_tas_lock(lck);
3363 }
3364 
3365 static void __kmp_init_nested_tas_lock_with_checks(kmp_tas_lock_t *lck) {
3366  __kmp_init_nested_tas_lock(lck);
3367 }
3368 
3369 #if KMP_USE_FUTEX
3370 static void __kmp_init_futex_lock_with_checks(kmp_futex_lock_t *lck) {
3371  __kmp_init_futex_lock(lck);
3372 }
3373 
3374 static void __kmp_init_nested_futex_lock_with_checks(kmp_futex_lock_t *lck) {
3375  __kmp_init_nested_futex_lock(lck);
3376 }
3377 #endif
3378 
3379 static int __kmp_is_ticket_lock_initialized(kmp_ticket_lock_t *lck) {
3380  return lck == lck->lk.self;
3381 }
3382 
3383 static void __kmp_init_ticket_lock_with_checks(kmp_ticket_lock_t *lck) {
3384  __kmp_init_ticket_lock(lck);
3385 }
3386 
3387 static void __kmp_init_nested_ticket_lock_with_checks(kmp_ticket_lock_t *lck) {
3388  __kmp_init_nested_ticket_lock(lck);
3389 }
3390 
3391 static int __kmp_is_queuing_lock_initialized(kmp_queuing_lock_t *lck) {
3392  return lck == lck->lk.initialized;
3393 }
3394 
3395 static void __kmp_init_queuing_lock_with_checks(kmp_queuing_lock_t *lck) {
3396  __kmp_init_queuing_lock(lck);
3397 }
3398 
3399 static void
3400 __kmp_init_nested_queuing_lock_with_checks(kmp_queuing_lock_t *lck) {
3401  __kmp_init_nested_queuing_lock(lck);
3402 }
3403 
3404 #if KMP_USE_ADAPTIVE_LOCKS
3405 static void __kmp_init_adaptive_lock_with_checks(kmp_adaptive_lock_t *lck) {
3406  __kmp_init_adaptive_lock(lck);
3407 }
3408 #endif
3409 
3410 static int __kmp_is_drdpa_lock_initialized(kmp_drdpa_lock_t *lck) {
3411  return lck == lck->lk.initialized;
3412 }
3413 
3414 static void __kmp_init_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck) {
3415  __kmp_init_drdpa_lock(lck);
3416 }
3417 
3418 static void __kmp_init_nested_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck) {
3419  __kmp_init_nested_drdpa_lock(lck);
3420 }
3421 
3422 /* user locks
3423  * They are implemented as a table of function pointers which are set to the
3424  * lock functions of the appropriate kind, once that has been determined. */
3425 
3426 enum kmp_lock_kind __kmp_user_lock_kind = lk_default;
3427 
3428 size_t __kmp_base_user_lock_size = 0;
3429 size_t __kmp_user_lock_size = 0;
3430 
3431 kmp_int32 (*__kmp_get_user_lock_owner_)(kmp_user_lock_p lck) = NULL;
3432 int (*__kmp_acquire_user_lock_with_checks_)(kmp_user_lock_p lck,
3433  kmp_int32 gtid) = NULL;
3434 
3435 int (*__kmp_test_user_lock_with_checks_)(kmp_user_lock_p lck,
3436  kmp_int32 gtid) = NULL;
3437 int (*__kmp_release_user_lock_with_checks_)(kmp_user_lock_p lck,
3438  kmp_int32 gtid) = NULL;
3439 void (*__kmp_init_user_lock_with_checks_)(kmp_user_lock_p lck) = NULL;
3440 void (*__kmp_destroy_user_lock_)(kmp_user_lock_p lck) = NULL;
3441 void (*__kmp_destroy_user_lock_with_checks_)(kmp_user_lock_p lck) = NULL;
3442 int (*__kmp_acquire_nested_user_lock_with_checks_)(kmp_user_lock_p lck,
3443  kmp_int32 gtid) = NULL;
3444 
3445 int (*__kmp_test_nested_user_lock_with_checks_)(kmp_user_lock_p lck,
3446  kmp_int32 gtid) = NULL;
3447 int (*__kmp_release_nested_user_lock_with_checks_)(kmp_user_lock_p lck,
3448  kmp_int32 gtid) = NULL;
3449 void (*__kmp_init_nested_user_lock_with_checks_)(kmp_user_lock_p lck) = NULL;
3450 void (*__kmp_destroy_nested_user_lock_with_checks_)(kmp_user_lock_p lck) = NULL;
3451 
3452 int (*__kmp_is_user_lock_initialized_)(kmp_user_lock_p lck) = NULL;
3453 const ident_t *(*__kmp_get_user_lock_location_)(kmp_user_lock_p lck) = NULL;
3454 void (*__kmp_set_user_lock_location_)(kmp_user_lock_p lck,
3455  const ident_t *loc) = NULL;
3456 kmp_lock_flags_t (*__kmp_get_user_lock_flags_)(kmp_user_lock_p lck) = NULL;
3457 void (*__kmp_set_user_lock_flags_)(kmp_user_lock_p lck,
3458  kmp_lock_flags_t flags) = NULL;
3459 
3460 void __kmp_set_user_lock_vptrs(kmp_lock_kind_t user_lock_kind) {
3461  switch (user_lock_kind) {
3462  case lk_default:
3463  default:
3464  KMP_ASSERT(0);
3465 
3466  case lk_tas: {
3467  __kmp_base_user_lock_size = sizeof(kmp_base_tas_lock_t);
3468  __kmp_user_lock_size = sizeof(kmp_tas_lock_t);
3469 
3470  __kmp_get_user_lock_owner_ =
3471  (kmp_int32(*)(kmp_user_lock_p))(&__kmp_get_tas_lock_owner);
3472 
3473  if (__kmp_env_consistency_check) {
3474  KMP_BIND_USER_LOCK_WITH_CHECKS(tas);
3475  KMP_BIND_NESTED_USER_LOCK_WITH_CHECKS(tas);
3476  } else {
3477  KMP_BIND_USER_LOCK(tas);
3478  KMP_BIND_NESTED_USER_LOCK(tas);
3479  }
3480 
3481  __kmp_destroy_user_lock_ =
3482  (void (*)(kmp_user_lock_p))(&__kmp_destroy_tas_lock);
3483 
3484  __kmp_is_user_lock_initialized_ = (int (*)(kmp_user_lock_p))NULL;
3485 
3486  __kmp_get_user_lock_location_ = (const ident_t *(*)(kmp_user_lock_p))NULL;
3487 
3488  __kmp_set_user_lock_location_ =
3489  (void (*)(kmp_user_lock_p, const ident_t *))NULL;
3490 
3491  __kmp_get_user_lock_flags_ = (kmp_lock_flags_t(*)(kmp_user_lock_p))NULL;
3492 
3493  __kmp_set_user_lock_flags_ =
3494  (void (*)(kmp_user_lock_p, kmp_lock_flags_t))NULL;
3495  } break;
3496 
3497 #if KMP_USE_FUTEX
3498 
3499  case lk_futex: {
3500  __kmp_base_user_lock_size = sizeof(kmp_base_futex_lock_t);
3501  __kmp_user_lock_size = sizeof(kmp_futex_lock_t);
3502 
3503  __kmp_get_user_lock_owner_ =
3504  (kmp_int32(*)(kmp_user_lock_p))(&__kmp_get_futex_lock_owner);
3505 
3506  if (__kmp_env_consistency_check) {
3507  KMP_BIND_USER_LOCK_WITH_CHECKS(futex);
3508  KMP_BIND_NESTED_USER_LOCK_WITH_CHECKS(futex);
3509  } else {
3510  KMP_BIND_USER_LOCK(futex);
3511  KMP_BIND_NESTED_USER_LOCK(futex);
3512  }
3513 
3514  __kmp_destroy_user_lock_ =
3515  (void (*)(kmp_user_lock_p))(&__kmp_destroy_futex_lock);
3516 
3517  __kmp_is_user_lock_initialized_ = (int (*)(kmp_user_lock_p))NULL;
3518 
3519  __kmp_get_user_lock_location_ = (const ident_t *(*)(kmp_user_lock_p))NULL;
3520 
3521  __kmp_set_user_lock_location_ =
3522  (void (*)(kmp_user_lock_p, const ident_t *))NULL;
3523 
3524  __kmp_get_user_lock_flags_ = (kmp_lock_flags_t(*)(kmp_user_lock_p))NULL;
3525 
3526  __kmp_set_user_lock_flags_ =
3527  (void (*)(kmp_user_lock_p, kmp_lock_flags_t))NULL;
3528  } break;
3529 
3530 #endif // KMP_USE_FUTEX
3531 
3532  case lk_ticket: {
3533  __kmp_base_user_lock_size = sizeof(kmp_base_ticket_lock_t);
3534  __kmp_user_lock_size = sizeof(kmp_ticket_lock_t);
3535 
3536  __kmp_get_user_lock_owner_ =
3537  (kmp_int32(*)(kmp_user_lock_p))(&__kmp_get_ticket_lock_owner);
3538 
3539  if (__kmp_env_consistency_check) {
3540  KMP_BIND_USER_LOCK_WITH_CHECKS(ticket);
3541  KMP_BIND_NESTED_USER_LOCK_WITH_CHECKS(ticket);
3542  } else {
3543  KMP_BIND_USER_LOCK(ticket);
3544  KMP_BIND_NESTED_USER_LOCK(ticket);
3545  }
3546 
3547  __kmp_destroy_user_lock_ =
3548  (void (*)(kmp_user_lock_p))(&__kmp_destroy_ticket_lock);
3549 
3550  __kmp_is_user_lock_initialized_ =
3551  (int (*)(kmp_user_lock_p))(&__kmp_is_ticket_lock_initialized);
3552 
3553  __kmp_get_user_lock_location_ =
3554  (const ident_t *(*)(kmp_user_lock_p))(&__kmp_get_ticket_lock_location);
3555 
3556  __kmp_set_user_lock_location_ = (void (*)(
3557  kmp_user_lock_p, const ident_t *))(&__kmp_set_ticket_lock_location);
3558 
3559  __kmp_get_user_lock_flags_ =
3560  (kmp_lock_flags_t(*)(kmp_user_lock_p))(&__kmp_get_ticket_lock_flags);
3561 
3562  __kmp_set_user_lock_flags_ = (void (*)(kmp_user_lock_p, kmp_lock_flags_t))(
3563  &__kmp_set_ticket_lock_flags);
3564  } break;
3565 
3566  case lk_queuing: {
3567  __kmp_base_user_lock_size = sizeof(kmp_base_queuing_lock_t);
3568  __kmp_user_lock_size = sizeof(kmp_queuing_lock_t);
3569 
3570  __kmp_get_user_lock_owner_ =
3571  (kmp_int32(*)(kmp_user_lock_p))(&__kmp_get_queuing_lock_owner);
3572 
3573  if (__kmp_env_consistency_check) {
3574  KMP_BIND_USER_LOCK_WITH_CHECKS(queuing);
3575  KMP_BIND_NESTED_USER_LOCK_WITH_CHECKS(queuing);
3576  } else {
3577  KMP_BIND_USER_LOCK(queuing);
3578  KMP_BIND_NESTED_USER_LOCK(queuing);
3579  }
3580 
3581  __kmp_destroy_user_lock_ =
3582  (void (*)(kmp_user_lock_p))(&__kmp_destroy_queuing_lock);
3583 
3584  __kmp_is_user_lock_initialized_ =
3585  (int (*)(kmp_user_lock_p))(&__kmp_is_queuing_lock_initialized);
3586 
3587  __kmp_get_user_lock_location_ =
3588  (const ident_t *(*)(kmp_user_lock_p))(&__kmp_get_queuing_lock_location);
3589 
3590  __kmp_set_user_lock_location_ = (void (*)(
3591  kmp_user_lock_p, const ident_t *))(&__kmp_set_queuing_lock_location);
3592 
3593  __kmp_get_user_lock_flags_ =
3594  (kmp_lock_flags_t(*)(kmp_user_lock_p))(&__kmp_get_queuing_lock_flags);
3595 
3596  __kmp_set_user_lock_flags_ = (void (*)(kmp_user_lock_p, kmp_lock_flags_t))(
3597  &__kmp_set_queuing_lock_flags);
3598  } break;
3599 
3600 #if KMP_USE_ADAPTIVE_LOCKS
3601  case lk_adaptive: {
3602  __kmp_base_user_lock_size = sizeof(kmp_base_adaptive_lock_t);
3603  __kmp_user_lock_size = sizeof(kmp_adaptive_lock_t);
3604 
3605  __kmp_get_user_lock_owner_ =
3606  (kmp_int32(*)(kmp_user_lock_p))(&__kmp_get_queuing_lock_owner);
3607 
3608  if (__kmp_env_consistency_check) {
3609  KMP_BIND_USER_LOCK_WITH_CHECKS(adaptive);
3610  } else {
3611  KMP_BIND_USER_LOCK(adaptive);
3612  }
3613 
3614  __kmp_destroy_user_lock_ =
3615  (void (*)(kmp_user_lock_p))(&__kmp_destroy_adaptive_lock);
3616 
3617  __kmp_is_user_lock_initialized_ =
3618  (int (*)(kmp_user_lock_p))(&__kmp_is_queuing_lock_initialized);
3619 
3620  __kmp_get_user_lock_location_ =
3621  (const ident_t *(*)(kmp_user_lock_p))(&__kmp_get_queuing_lock_location);
3622 
3623  __kmp_set_user_lock_location_ = (void (*)(
3624  kmp_user_lock_p, const ident_t *))(&__kmp_set_queuing_lock_location);
3625 
3626  __kmp_get_user_lock_flags_ =
3627  (kmp_lock_flags_t(*)(kmp_user_lock_p))(&__kmp_get_queuing_lock_flags);
3628 
3629  __kmp_set_user_lock_flags_ = (void (*)(kmp_user_lock_p, kmp_lock_flags_t))(
3630  &__kmp_set_queuing_lock_flags);
3631 
3632  } break;
3633 #endif // KMP_USE_ADAPTIVE_LOCKS
3634 
3635  case lk_drdpa: {
3636  __kmp_base_user_lock_size = sizeof(kmp_base_drdpa_lock_t);
3637  __kmp_user_lock_size = sizeof(kmp_drdpa_lock_t);
3638 
3639  __kmp_get_user_lock_owner_ =
3640  (kmp_int32(*)(kmp_user_lock_p))(&__kmp_get_drdpa_lock_owner);
3641 
3642  if (__kmp_env_consistency_check) {
3643  KMP_BIND_USER_LOCK_WITH_CHECKS(drdpa);
3644  KMP_BIND_NESTED_USER_LOCK_WITH_CHECKS(drdpa);
3645  } else {
3646  KMP_BIND_USER_LOCK(drdpa);
3647  KMP_BIND_NESTED_USER_LOCK(drdpa);
3648  }
3649 
3650  __kmp_destroy_user_lock_ =
3651  (void (*)(kmp_user_lock_p))(&__kmp_destroy_drdpa_lock);
3652 
3653  __kmp_is_user_lock_initialized_ =
3654  (int (*)(kmp_user_lock_p))(&__kmp_is_drdpa_lock_initialized);
3655 
3656  __kmp_get_user_lock_location_ =
3657  (const ident_t *(*)(kmp_user_lock_p))(&__kmp_get_drdpa_lock_location);
3658 
3659  __kmp_set_user_lock_location_ = (void (*)(
3660  kmp_user_lock_p, const ident_t *))(&__kmp_set_drdpa_lock_location);
3661 
3662  __kmp_get_user_lock_flags_ =
3663  (kmp_lock_flags_t(*)(kmp_user_lock_p))(&__kmp_get_drdpa_lock_flags);
3664 
3665  __kmp_set_user_lock_flags_ = (void (*)(kmp_user_lock_p, kmp_lock_flags_t))(
3666  &__kmp_set_drdpa_lock_flags);
3667  } break;
3668  }
3669 }
3670 
3671 // ----------------------------------------------------------------------------
3672 // User lock table & lock allocation
3673 
3674 kmp_lock_table_t __kmp_user_lock_table = {1, 0, NULL};
3675 kmp_user_lock_p __kmp_lock_pool = NULL;
3676 
3677 // Lock block-allocation support.
3678 kmp_block_of_locks *__kmp_lock_blocks = NULL;
3679 int __kmp_num_locks_in_block = 1; // FIXME - tune this value
3680 
3681 static kmp_lock_index_t __kmp_lock_table_insert(kmp_user_lock_p lck) {
3682  // Assume that kmp_global_lock is held upon entry/exit.
3683  kmp_lock_index_t index;
3684  if (__kmp_user_lock_table.used >= __kmp_user_lock_table.allocated) {
3685  kmp_lock_index_t size;
3686  kmp_user_lock_p *table;
3687  // Reallocate lock table.
3688  if (__kmp_user_lock_table.allocated == 0) {
3689  size = 1024;
3690  } else {
3691  size = __kmp_user_lock_table.allocated * 2;
3692  }
3693  table = (kmp_user_lock_p *)__kmp_allocate(sizeof(kmp_user_lock_p) * size);
3694  KMP_MEMCPY(table + 1, __kmp_user_lock_table.table + 1,
3695  sizeof(kmp_user_lock_p) * (__kmp_user_lock_table.used - 1));
3696  table[0] = (kmp_user_lock_p)__kmp_user_lock_table.table;
3697  // We cannot free the previous table now, since it may be in use by other
3698  // threads. So save the pointer to the previous table in in the first
3699  // element of the new table. All the tables will be organized into a list,
3700  // and could be freed when library shutting down.
3701  __kmp_user_lock_table.table = table;
3702  __kmp_user_lock_table.allocated = size;
3703  }
3704  KMP_DEBUG_ASSERT(__kmp_user_lock_table.used <
3705  __kmp_user_lock_table.allocated);
3706  index = __kmp_user_lock_table.used;
3707  __kmp_user_lock_table.table[index] = lck;
3708  ++__kmp_user_lock_table.used;
3709  return index;
3710 }
3711 
3712 static kmp_user_lock_p __kmp_lock_block_allocate() {
3713  // Assume that kmp_global_lock is held upon entry/exit.
3714  static int last_index = 0;
3715  if ((last_index >= __kmp_num_locks_in_block) || (__kmp_lock_blocks == NULL)) {
3716  // Restart the index.
3717  last_index = 0;
3718  // Need to allocate a new block.
3719  KMP_DEBUG_ASSERT(__kmp_user_lock_size > 0);
3720  size_t space_for_locks = __kmp_user_lock_size * __kmp_num_locks_in_block;
3721  char *buffer =
3722  (char *)__kmp_allocate(space_for_locks + sizeof(kmp_block_of_locks));
3723  // Set up the new block.
3724  kmp_block_of_locks *new_block =
3725  (kmp_block_of_locks *)(&buffer[space_for_locks]);
3726  new_block->next_block = __kmp_lock_blocks;
3727  new_block->locks = (void *)buffer;
3728  // Publish the new block.
3729  KMP_MB();
3730  __kmp_lock_blocks = new_block;
3731  }
3732  kmp_user_lock_p ret = (kmp_user_lock_p)(&(
3733  ((char *)(__kmp_lock_blocks->locks))[last_index * __kmp_user_lock_size]));
3734  last_index++;
3735  return ret;
3736 }
3737 
3738 // Get memory for a lock. It may be freshly allocated memory or reused memory
3739 // from lock pool.
3740 kmp_user_lock_p __kmp_user_lock_allocate(void **user_lock, kmp_int32 gtid,
3741  kmp_lock_flags_t flags) {
3742  kmp_user_lock_p lck;
3743  kmp_lock_index_t index;
3744  KMP_DEBUG_ASSERT(user_lock);
3745 
3746  __kmp_acquire_lock(&__kmp_global_lock, gtid);
3747 
3748  if (__kmp_lock_pool == NULL) {
3749  // Lock pool is empty. Allocate new memory.
3750 
3751  // ANNOTATION: Found no good way to express the syncronisation
3752  // between allocation and usage, so ignore the allocation
3753  ANNOTATE_IGNORE_WRITES_BEGIN();
3754  if (__kmp_num_locks_in_block <= 1) { // Tune this cutoff point.
3755  lck = (kmp_user_lock_p)__kmp_allocate(__kmp_user_lock_size);
3756  } else {
3757  lck = __kmp_lock_block_allocate();
3758  }
3759  ANNOTATE_IGNORE_WRITES_END();
3760 
3761  // Insert lock in the table so that it can be freed in __kmp_cleanup,
3762  // and debugger has info on all allocated locks.
3763  index = __kmp_lock_table_insert(lck);
3764  } else {
3765  // Pick up lock from pool.
3766  lck = __kmp_lock_pool;
3767  index = __kmp_lock_pool->pool.index;
3768  __kmp_lock_pool = __kmp_lock_pool->pool.next;
3769  }
3770 
3771  // We could potentially differentiate between nested and regular locks
3772  // here, and do the lock table lookup for regular locks only.
3773  if (OMP_LOCK_T_SIZE < sizeof(void *)) {
3774  *((kmp_lock_index_t *)user_lock) = index;
3775  } else {
3776  *((kmp_user_lock_p *)user_lock) = lck;
3777  }
3778 
3779  // mark the lock if it is critical section lock.
3780  __kmp_set_user_lock_flags(lck, flags);
3781 
3782  __kmp_release_lock(&__kmp_global_lock, gtid); // AC: TODO move this line upper
3783 
3784  return lck;
3785 }
3786 
3787 // Put lock's memory to pool for reusing.
3788 void __kmp_user_lock_free(void **user_lock, kmp_int32 gtid,
3789  kmp_user_lock_p lck) {
3790  KMP_DEBUG_ASSERT(user_lock != NULL);
3791  KMP_DEBUG_ASSERT(lck != NULL);
3792 
3793  __kmp_acquire_lock(&__kmp_global_lock, gtid);
3794 
3795  lck->pool.next = __kmp_lock_pool;
3796  __kmp_lock_pool = lck;
3797  if (OMP_LOCK_T_SIZE < sizeof(void *)) {
3798  kmp_lock_index_t index = *((kmp_lock_index_t *)user_lock);
3799  KMP_DEBUG_ASSERT(0 < index && index <= __kmp_user_lock_table.used);
3800  lck->pool.index = index;
3801  }
3802 
3803  __kmp_release_lock(&__kmp_global_lock, gtid);
3804 }
3805 
3806 kmp_user_lock_p __kmp_lookup_user_lock(void **user_lock, char const *func) {
3807  kmp_user_lock_p lck = NULL;
3808 
3809  if (__kmp_env_consistency_check) {
3810  if (user_lock == NULL) {
3811  KMP_FATAL(LockIsUninitialized, func);
3812  }
3813  }
3814 
3815  if (OMP_LOCK_T_SIZE < sizeof(void *)) {
3816  kmp_lock_index_t index = *((kmp_lock_index_t *)user_lock);
3817  if (__kmp_env_consistency_check) {
3818  if (!(0 < index && index < __kmp_user_lock_table.used)) {
3819  KMP_FATAL(LockIsUninitialized, func);
3820  }
3821  }
3822  KMP_DEBUG_ASSERT(0 < index && index < __kmp_user_lock_table.used);
3823  KMP_DEBUG_ASSERT(__kmp_user_lock_size > 0);
3824  lck = __kmp_user_lock_table.table[index];
3825  } else {
3826  lck = *((kmp_user_lock_p *)user_lock);
3827  }
3828 
3829  if (__kmp_env_consistency_check) {
3830  if (lck == NULL) {
3831  KMP_FATAL(LockIsUninitialized, func);
3832  }
3833  }
3834 
3835  return lck;
3836 }
3837 
3838 void __kmp_cleanup_user_locks(void) {
3839  // Reset lock pool. Don't worry about lock in the pool--we will free them when
3840  // iterating through lock table (it includes all the locks, dead or alive).
3841  __kmp_lock_pool = NULL;
3842 
3843 #define IS_CRITICAL(lck) \
3844  ((__kmp_get_user_lock_flags_ != NULL) && \
3845  ((*__kmp_get_user_lock_flags_)(lck)&kmp_lf_critical_section))
3846 
3847  // Loop through lock table, free all locks.
3848  // Do not free item [0], it is reserved for lock tables list.
3849  //
3850  // FIXME - we are iterating through a list of (pointers to) objects of type
3851  // union kmp_user_lock, but we have no way of knowing whether the base type is
3852  // currently "pool" or whatever the global user lock type is.
3853  //
3854  // We are relying on the fact that for all of the user lock types
3855  // (except "tas"), the first field in the lock struct is the "initialized"
3856  // field, which is set to the address of the lock object itself when
3857  // the lock is initialized. When the union is of type "pool", the
3858  // first field is a pointer to the next object in the free list, which
3859  // will not be the same address as the object itself.
3860  //
3861  // This means that the check (*__kmp_is_user_lock_initialized_)(lck) will fail
3862  // for "pool" objects on the free list. This must happen as the "location"
3863  // field of real user locks overlaps the "index" field of "pool" objects.
3864  //
3865  // It would be better to run through the free list, and remove all "pool"
3866  // objects from the lock table before executing this loop. However,
3867  // "pool" objects do not always have their index field set (only on
3868  // lin_32e), and I don't want to search the lock table for the address
3869  // of every "pool" object on the free list.
3870  while (__kmp_user_lock_table.used > 1) {
3871  const ident *loc;
3872 
3873  // reduce __kmp_user_lock_table.used before freeing the lock,
3874  // so that state of locks is consistent
3875  kmp_user_lock_p lck =
3876  __kmp_user_lock_table.table[--__kmp_user_lock_table.used];
3877 
3878  if ((__kmp_is_user_lock_initialized_ != NULL) &&
3879  (*__kmp_is_user_lock_initialized_)(lck)) {
3880  // Issue a warning if: KMP_CONSISTENCY_CHECK AND lock is initialized AND
3881  // it is NOT a critical section (user is not responsible for destroying
3882  // criticals) AND we know source location to report.
3883  if (__kmp_env_consistency_check && (!IS_CRITICAL(lck)) &&
3884  ((loc = __kmp_get_user_lock_location(lck)) != NULL) &&
3885  (loc->psource != NULL)) {
3886  kmp_str_loc_t str_loc = __kmp_str_loc_init(loc->psource, 0);
3887  KMP_WARNING(CnsLockNotDestroyed, str_loc.file, str_loc.line);
3888  __kmp_str_loc_free(&str_loc);
3889  }
3890 
3891 #ifdef KMP_DEBUG
3892  if (IS_CRITICAL(lck)) {
3893  KA_TRACE(
3894  20,
3895  ("__kmp_cleanup_user_locks: free critical section lock %p (%p)\n",
3896  lck, *(void **)lck));
3897  } else {
3898  KA_TRACE(20, ("__kmp_cleanup_user_locks: free lock %p (%p)\n", lck,
3899  *(void **)lck));
3900  }
3901 #endif // KMP_DEBUG
3902 
3903  // Cleanup internal lock dynamic resources (for drdpa locks particularly).
3904  __kmp_destroy_user_lock(lck);
3905  }
3906 
3907  // Free the lock if block allocation of locks is not used.
3908  if (__kmp_lock_blocks == NULL) {
3909  __kmp_free(lck);
3910  }
3911  }
3912 
3913 #undef IS_CRITICAL
3914 
3915  // delete lock table(s).
3916  kmp_user_lock_p *table_ptr = __kmp_user_lock_table.table;
3917  __kmp_user_lock_table.table = NULL;
3918  __kmp_user_lock_table.allocated = 0;
3919 
3920  while (table_ptr != NULL) {
3921  // In the first element we saved the pointer to the previous
3922  // (smaller) lock table.
3923  kmp_user_lock_p *next = (kmp_user_lock_p *)(table_ptr[0]);
3924  __kmp_free(table_ptr);
3925  table_ptr = next;
3926  }
3927 
3928  // Free buffers allocated for blocks of locks.
3929  kmp_block_of_locks_t *block_ptr = __kmp_lock_blocks;
3930  __kmp_lock_blocks = NULL;
3931 
3932  while (block_ptr != NULL) {
3933  kmp_block_of_locks_t *next = block_ptr->next_block;
3934  __kmp_free(block_ptr->locks);
3935  // *block_ptr itself was allocated at the end of the locks vector.
3936  block_ptr = next;
3937  }
3938 
3939  TCW_4(__kmp_init_user_locks, FALSE);
3940 }
3941 
3942 #endif // KMP_USE_DYNAMIC_LOCK
Definition: kmp.h:222
char const * psource
Definition: kmp.h:232