LLVM OpenMP* Runtime Library
z_Linux_util.cpp
1 /*
2  * z_Linux_util.cpp -- platform specific routines.
3  */
4 
5 //===----------------------------------------------------------------------===//
6 //
7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8 // See https://llvm.org/LICENSE.txt for license information.
9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "kmp.h"
14 #include "kmp_affinity.h"
15 #include "kmp_i18n.h"
16 #include "kmp_io.h"
17 #include "kmp_itt.h"
18 #include "kmp_lock.h"
19 #include "kmp_stats.h"
20 #include "kmp_str.h"
21 #include "kmp_wait_release.h"
22 #include "kmp_wrapper_getpid.h"
23 
24 #if !KMP_OS_DRAGONFLY && !KMP_OS_FREEBSD && !KMP_OS_NETBSD && !KMP_OS_OPENBSD
25 #include <alloca.h>
26 #endif
27 #include <math.h> // HUGE_VAL.
28 #include <sys/resource.h>
29 #include <sys/syscall.h>
30 #include <sys/time.h>
31 #include <sys/times.h>
32 #include <unistd.h>
33 
34 #if KMP_OS_LINUX && !KMP_OS_CNK
35 #include <sys/sysinfo.h>
36 #if KMP_USE_FUTEX
37 // We should really include <futex.h>, but that causes compatibility problems on
38 // different Linux* OS distributions that either require that you include (or
39 // break when you try to include) <pci/types.h>. Since all we need is the two
40 // macros below (which are part of the kernel ABI, so can't change) we just
41 // define the constants here and don't include <futex.h>
42 #ifndef FUTEX_WAIT
43 #define FUTEX_WAIT 0
44 #endif
45 #ifndef FUTEX_WAKE
46 #define FUTEX_WAKE 1
47 #endif
48 #endif
49 #elif KMP_OS_DARWIN
50 #include <mach/mach.h>
51 #include <sys/sysctl.h>
52 #elif KMP_OS_DRAGONFLY || KMP_OS_FREEBSD
53 #include <pthread_np.h>
54 #elif KMP_OS_NETBSD
55 #include <sys/types.h>
56 #include <sys/sysctl.h>
57 #endif
58 
59 #include <ctype.h>
60 #include <dirent.h>
61 #include <fcntl.h>
62 
63 #include "tsan_annotations.h"
64 
65 struct kmp_sys_timer {
66  struct timespec start;
67 };
68 
69 // Convert timespec to nanoseconds.
70 #define TS2NS(timespec) (((timespec).tv_sec * 1e9) + (timespec).tv_nsec)
71 
72 static struct kmp_sys_timer __kmp_sys_timer_data;
73 
74 #if KMP_HANDLE_SIGNALS
75 typedef void (*sig_func_t)(int);
76 STATIC_EFI2_WORKAROUND struct sigaction __kmp_sighldrs[NSIG];
77 static sigset_t __kmp_sigset;
78 #endif
79 
80 static int __kmp_init_runtime = FALSE;
81 
82 static int __kmp_fork_count = 0;
83 
84 static pthread_condattr_t __kmp_suspend_cond_attr;
85 static pthread_mutexattr_t __kmp_suspend_mutex_attr;
86 
87 static kmp_cond_align_t __kmp_wait_cv;
88 static kmp_mutex_align_t __kmp_wait_mx;
89 
90 kmp_uint64 __kmp_ticks_per_msec = 1000000;
91 
92 #ifdef DEBUG_SUSPEND
93 static void __kmp_print_cond(char *buffer, kmp_cond_align_t *cond) {
94  KMP_SNPRINTF(buffer, 128, "(cond (lock (%ld, %d)), (descr (%p)))",
95  cond->c_cond.__c_lock.__status, cond->c_cond.__c_lock.__spinlock,
96  cond->c_cond.__c_waiting);
97 }
98 #endif
99 
100 #if (KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED)
101 
102 /* Affinity support */
103 
104 void __kmp_affinity_bind_thread(int which) {
105  KMP_ASSERT2(KMP_AFFINITY_CAPABLE(),
106  "Illegal set affinity operation when not capable");
107 
108  kmp_affin_mask_t *mask;
109  KMP_CPU_ALLOC_ON_STACK(mask);
110  KMP_CPU_ZERO(mask);
111  KMP_CPU_SET(which, mask);
112  __kmp_set_system_affinity(mask, TRUE);
113  KMP_CPU_FREE_FROM_STACK(mask);
114 }
115 
116 /* Determine if we can access affinity functionality on this version of
117  * Linux* OS by checking __NR_sched_{get,set}affinity system calls, and set
118  * __kmp_affin_mask_size to the appropriate value (0 means not capable). */
119 void __kmp_affinity_determine_capable(const char *env_var) {
120 // Check and see if the OS supports thread affinity.
121 
122 #define KMP_CPU_SET_SIZE_LIMIT (1024 * 1024)
123 
124  int gCode;
125  int sCode;
126  unsigned char *buf;
127  buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT);
128 
129  // If Linux* OS:
130  // If the syscall fails or returns a suggestion for the size,
131  // then we don't have to search for an appropriate size.
132  gCode = syscall(__NR_sched_getaffinity, 0, KMP_CPU_SET_SIZE_LIMIT, buf);
133  KA_TRACE(30, ("__kmp_affinity_determine_capable: "
134  "initial getaffinity call returned %d errno = %d\n",
135  gCode, errno));
136 
137  // if ((gCode < 0) && (errno == ENOSYS))
138  if (gCode < 0) {
139  // System call not supported
140  if (__kmp_affinity_verbose ||
141  (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) &&
142  (__kmp_affinity_type != affinity_default) &&
143  (__kmp_affinity_type != affinity_disabled))) {
144  int error = errno;
145  kmp_msg_t err_code = KMP_ERR(error);
146  __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var),
147  err_code, __kmp_msg_null);
148  if (__kmp_generate_warnings == kmp_warnings_off) {
149  __kmp_str_free(&err_code.str);
150  }
151  }
152  KMP_AFFINITY_DISABLE();
153  KMP_INTERNAL_FREE(buf);
154  return;
155  }
156  if (gCode > 0) { // Linux* OS only
157  // The optimal situation: the OS returns the size of the buffer it expects.
158  //
159  // A verification of correct behavior is that Isetaffinity on a NULL
160  // buffer with the same size fails with errno set to EFAULT.
161  sCode = syscall(__NR_sched_setaffinity, 0, gCode, NULL);
162  KA_TRACE(30, ("__kmp_affinity_determine_capable: "
163  "setaffinity for mask size %d returned %d errno = %d\n",
164  gCode, sCode, errno));
165  if (sCode < 0) {
166  if (errno == ENOSYS) {
167  if (__kmp_affinity_verbose ||
168  (__kmp_affinity_warnings &&
169  (__kmp_affinity_type != affinity_none) &&
170  (__kmp_affinity_type != affinity_default) &&
171  (__kmp_affinity_type != affinity_disabled))) {
172  int error = errno;
173  kmp_msg_t err_code = KMP_ERR(error);
174  __kmp_msg(kmp_ms_warning, KMP_MSG(SetAffSysCallNotSupported, env_var),
175  err_code, __kmp_msg_null);
176  if (__kmp_generate_warnings == kmp_warnings_off) {
177  __kmp_str_free(&err_code.str);
178  }
179  }
180  KMP_AFFINITY_DISABLE();
181  KMP_INTERNAL_FREE(buf);
182  }
183  if (errno == EFAULT) {
184  KMP_AFFINITY_ENABLE(gCode);
185  KA_TRACE(10, ("__kmp_affinity_determine_capable: "
186  "affinity supported (mask size %d)\n",
187  (int)__kmp_affin_mask_size));
188  KMP_INTERNAL_FREE(buf);
189  return;
190  }
191  }
192  }
193 
194  // Call the getaffinity system call repeatedly with increasing set sizes
195  // until we succeed, or reach an upper bound on the search.
196  KA_TRACE(30, ("__kmp_affinity_determine_capable: "
197  "searching for proper set size\n"));
198  int size;
199  for (size = 1; size <= KMP_CPU_SET_SIZE_LIMIT; size *= 2) {
200  gCode = syscall(__NR_sched_getaffinity, 0, size, buf);
201  KA_TRACE(30, ("__kmp_affinity_determine_capable: "
202  "getaffinity for mask size %d returned %d errno = %d\n",
203  size, gCode, errno));
204 
205  if (gCode < 0) {
206  if (errno == ENOSYS) {
207  // We shouldn't get here
208  KA_TRACE(30, ("__kmp_affinity_determine_capable: "
209  "inconsistent OS call behavior: errno == ENOSYS for mask "
210  "size %d\n",
211  size));
212  if (__kmp_affinity_verbose ||
213  (__kmp_affinity_warnings &&
214  (__kmp_affinity_type != affinity_none) &&
215  (__kmp_affinity_type != affinity_default) &&
216  (__kmp_affinity_type != affinity_disabled))) {
217  int error = errno;
218  kmp_msg_t err_code = KMP_ERR(error);
219  __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var),
220  err_code, __kmp_msg_null);
221  if (__kmp_generate_warnings == kmp_warnings_off) {
222  __kmp_str_free(&err_code.str);
223  }
224  }
225  KMP_AFFINITY_DISABLE();
226  KMP_INTERNAL_FREE(buf);
227  return;
228  }
229  continue;
230  }
231 
232  sCode = syscall(__NR_sched_setaffinity, 0, gCode, NULL);
233  KA_TRACE(30, ("__kmp_affinity_determine_capable: "
234  "setaffinity for mask size %d returned %d errno = %d\n",
235  gCode, sCode, errno));
236  if (sCode < 0) {
237  if (errno == ENOSYS) { // Linux* OS only
238  // We shouldn't get here
239  KA_TRACE(30, ("__kmp_affinity_determine_capable: "
240  "inconsistent OS call behavior: errno == ENOSYS for mask "
241  "size %d\n",
242  size));
243  if (__kmp_affinity_verbose ||
244  (__kmp_affinity_warnings &&
245  (__kmp_affinity_type != affinity_none) &&
246  (__kmp_affinity_type != affinity_default) &&
247  (__kmp_affinity_type != affinity_disabled))) {
248  int error = errno;
249  kmp_msg_t err_code = KMP_ERR(error);
250  __kmp_msg(kmp_ms_warning, KMP_MSG(SetAffSysCallNotSupported, env_var),
251  err_code, __kmp_msg_null);
252  if (__kmp_generate_warnings == kmp_warnings_off) {
253  __kmp_str_free(&err_code.str);
254  }
255  }
256  KMP_AFFINITY_DISABLE();
257  KMP_INTERNAL_FREE(buf);
258  return;
259  }
260  if (errno == EFAULT) {
261  KMP_AFFINITY_ENABLE(gCode);
262  KA_TRACE(10, ("__kmp_affinity_determine_capable: "
263  "affinity supported (mask size %d)\n",
264  (int)__kmp_affin_mask_size));
265  KMP_INTERNAL_FREE(buf);
266  return;
267  }
268  }
269  }
270  // save uncaught error code
271  // int error = errno;
272  KMP_INTERNAL_FREE(buf);
273  // restore uncaught error code, will be printed at the next KMP_WARNING below
274  // errno = error;
275 
276  // Affinity is not supported
277  KMP_AFFINITY_DISABLE();
278  KA_TRACE(10, ("__kmp_affinity_determine_capable: "
279  "cannot determine mask size - affinity not supported\n"));
280  if (__kmp_affinity_verbose ||
281  (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) &&
282  (__kmp_affinity_type != affinity_default) &&
283  (__kmp_affinity_type != affinity_disabled))) {
284  KMP_WARNING(AffCantGetMaskSize, env_var);
285  }
286 }
287 
288 #endif // KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED
289 
290 #if KMP_USE_FUTEX
291 
292 int __kmp_futex_determine_capable() {
293  int loc = 0;
294  int rc = syscall(__NR_futex, &loc, FUTEX_WAKE, 1, NULL, NULL, 0);
295  int retval = (rc == 0) || (errno != ENOSYS);
296 
297  KA_TRACE(10,
298  ("__kmp_futex_determine_capable: rc = %d errno = %d\n", rc, errno));
299  KA_TRACE(10, ("__kmp_futex_determine_capable: futex syscall%s supported\n",
300  retval ? "" : " not"));
301 
302  return retval;
303 }
304 
305 #endif // KMP_USE_FUTEX
306 
307 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (!KMP_ASM_INTRINS)
308 /* Only 32-bit "add-exchange" instruction on IA-32 architecture causes us to
309  use compare_and_store for these routines */
310 
311 kmp_int8 __kmp_test_then_or8(volatile kmp_int8 *p, kmp_int8 d) {
312  kmp_int8 old_value, new_value;
313 
314  old_value = TCR_1(*p);
315  new_value = old_value | d;
316 
317  while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
318  KMP_CPU_PAUSE();
319  old_value = TCR_1(*p);
320  new_value = old_value | d;
321  }
322  return old_value;
323 }
324 
325 kmp_int8 __kmp_test_then_and8(volatile kmp_int8 *p, kmp_int8 d) {
326  kmp_int8 old_value, new_value;
327 
328  old_value = TCR_1(*p);
329  new_value = old_value & d;
330 
331  while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
332  KMP_CPU_PAUSE();
333  old_value = TCR_1(*p);
334  new_value = old_value & d;
335  }
336  return old_value;
337 }
338 
339 kmp_uint32 __kmp_test_then_or32(volatile kmp_uint32 *p, kmp_uint32 d) {
340  kmp_uint32 old_value, new_value;
341 
342  old_value = TCR_4(*p);
343  new_value = old_value | d;
344 
345  while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) {
346  KMP_CPU_PAUSE();
347  old_value = TCR_4(*p);
348  new_value = old_value | d;
349  }
350  return old_value;
351 }
352 
353 kmp_uint32 __kmp_test_then_and32(volatile kmp_uint32 *p, kmp_uint32 d) {
354  kmp_uint32 old_value, new_value;
355 
356  old_value = TCR_4(*p);
357  new_value = old_value & d;
358 
359  while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) {
360  KMP_CPU_PAUSE();
361  old_value = TCR_4(*p);
362  new_value = old_value & d;
363  }
364  return old_value;
365 }
366 
367 #if KMP_ARCH_X86
368 kmp_int8 __kmp_test_then_add8(volatile kmp_int8 *p, kmp_int8 d) {
369  kmp_int8 old_value, new_value;
370 
371  old_value = TCR_1(*p);
372  new_value = old_value + d;
373 
374  while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
375  KMP_CPU_PAUSE();
376  old_value = TCR_1(*p);
377  new_value = old_value + d;
378  }
379  return old_value;
380 }
381 
382 kmp_int64 __kmp_test_then_add64(volatile kmp_int64 *p, kmp_int64 d) {
383  kmp_int64 old_value, new_value;
384 
385  old_value = TCR_8(*p);
386  new_value = old_value + d;
387 
388  while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
389  KMP_CPU_PAUSE();
390  old_value = TCR_8(*p);
391  new_value = old_value + d;
392  }
393  return old_value;
394 }
395 #endif /* KMP_ARCH_X86 */
396 
397 kmp_uint64 __kmp_test_then_or64(volatile kmp_uint64 *p, kmp_uint64 d) {
398  kmp_uint64 old_value, new_value;
399 
400  old_value = TCR_8(*p);
401  new_value = old_value | d;
402  while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
403  KMP_CPU_PAUSE();
404  old_value = TCR_8(*p);
405  new_value = old_value | d;
406  }
407  return old_value;
408 }
409 
410 kmp_uint64 __kmp_test_then_and64(volatile kmp_uint64 *p, kmp_uint64 d) {
411  kmp_uint64 old_value, new_value;
412 
413  old_value = TCR_8(*p);
414  new_value = old_value & d;
415  while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
416  KMP_CPU_PAUSE();
417  old_value = TCR_8(*p);
418  new_value = old_value & d;
419  }
420  return old_value;
421 }
422 
423 #endif /* (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (! KMP_ASM_INTRINS) */
424 
425 void __kmp_terminate_thread(int gtid) {
426  int status;
427  kmp_info_t *th = __kmp_threads[gtid];
428 
429  if (!th)
430  return;
431 
432 #ifdef KMP_CANCEL_THREADS
433  KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid));
434  status = pthread_cancel(th->th.th_info.ds.ds_thread);
435  if (status != 0 && status != ESRCH) {
436  __kmp_fatal(KMP_MSG(CantTerminateWorkerThread), KMP_ERR(status),
437  __kmp_msg_null);
438  }
439 #endif
440  KMP_YIELD(TRUE);
441 } //
442 
443 /* Set thread stack info according to values returned by pthread_getattr_np().
444  If values are unreasonable, assume call failed and use incremental stack
445  refinement method instead. Returns TRUE if the stack parameters could be
446  determined exactly, FALSE if incremental refinement is necessary. */
447 static kmp_int32 __kmp_set_stack_info(int gtid, kmp_info_t *th) {
448  int stack_data;
449 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \
450  KMP_OS_HURD || KMP_OS_KFREEBSD
451  pthread_attr_t attr;
452  int status;
453  size_t size = 0;
454  void *addr = 0;
455 
456  /* Always do incremental stack refinement for ubermaster threads since the
457  initial thread stack range can be reduced by sibling thread creation so
458  pthread_attr_getstack may cause thread gtid aliasing */
459  if (!KMP_UBER_GTID(gtid)) {
460 
461  /* Fetch the real thread attributes */
462  status = pthread_attr_init(&attr);
463  KMP_CHECK_SYSFAIL("pthread_attr_init", status);
464 #if KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD
465  status = pthread_attr_get_np(pthread_self(), &attr);
466  KMP_CHECK_SYSFAIL("pthread_attr_get_np", status);
467 #else
468  status = pthread_getattr_np(pthread_self(), &attr);
469  KMP_CHECK_SYSFAIL("pthread_getattr_np", status);
470 #endif
471  status = pthread_attr_getstack(&attr, &addr, &size);
472  KMP_CHECK_SYSFAIL("pthread_attr_getstack", status);
473  KA_TRACE(60,
474  ("__kmp_set_stack_info: T#%d pthread_attr_getstack returned size:"
475  " %lu, low addr: %p\n",
476  gtid, size, addr));
477  status = pthread_attr_destroy(&attr);
478  KMP_CHECK_SYSFAIL("pthread_attr_destroy", status);
479  }
480 
481  if (size != 0 && addr != 0) { // was stack parameter determination successful?
482  /* Store the correct base and size */
483  TCW_PTR(th->th.th_info.ds.ds_stackbase, (((char *)addr) + size));
484  TCW_PTR(th->th.th_info.ds.ds_stacksize, size);
485  TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE);
486  return TRUE;
487  }
488 #endif /* KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD ||
489  KMP_OS_HURD */
490  /* Use incremental refinement starting from initial conservative estimate */
491  TCW_PTR(th->th.th_info.ds.ds_stacksize, 0);
492  TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data);
493  TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE);
494  return FALSE;
495 }
496 
497 static void *__kmp_launch_worker(void *thr) {
498  int status, old_type, old_state;
499 #ifdef KMP_BLOCK_SIGNALS
500  sigset_t new_set, old_set;
501 #endif /* KMP_BLOCK_SIGNALS */
502  void *exit_val;
503 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \
504  KMP_OS_OPENBSD || KMP_OS_HURD || KMP_OS_KFREEBSD
505  void *volatile padding = 0;
506 #endif
507  int gtid;
508 
509  gtid = ((kmp_info_t *)thr)->th.th_info.ds.ds_gtid;
510  __kmp_gtid_set_specific(gtid);
511 #ifdef KMP_TDATA_GTID
512  __kmp_gtid = gtid;
513 #endif
514 #if KMP_STATS_ENABLED
515  // set thread local index to point to thread-specific stats
516  __kmp_stats_thread_ptr = ((kmp_info_t *)thr)->th.th_stats;
517  __kmp_stats_thread_ptr->startLife();
518  KMP_SET_THREAD_STATE(IDLE);
519  KMP_INIT_PARTITIONED_TIMERS(OMP_idle);
520 #endif
521 
522 #if USE_ITT_BUILD
523  __kmp_itt_thread_name(gtid);
524 #endif /* USE_ITT_BUILD */
525 
526 #if KMP_AFFINITY_SUPPORTED
527  __kmp_affinity_set_init_mask(gtid, FALSE);
528 #endif
529 
530 #ifdef KMP_CANCEL_THREADS
531  status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type);
532  KMP_CHECK_SYSFAIL("pthread_setcanceltype", status);
533  // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads?
534  status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state);
535  KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
536 #endif
537 
538 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
539  // Set FP control regs to be a copy of the parallel initialization thread's.
540  __kmp_clear_x87_fpu_status_word();
541  __kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word);
542  __kmp_load_mxcsr(&__kmp_init_mxcsr);
543 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
544 
545 #ifdef KMP_BLOCK_SIGNALS
546  status = sigfillset(&new_set);
547  KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status);
548  status = pthread_sigmask(SIG_BLOCK, &new_set, &old_set);
549  KMP_CHECK_SYSFAIL("pthread_sigmask", status);
550 #endif /* KMP_BLOCK_SIGNALS */
551 
552 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \
553  KMP_OS_OPENBSD
554  if (__kmp_stkoffset > 0 && gtid > 0) {
555  padding = KMP_ALLOCA(gtid * __kmp_stkoffset);
556  }
557 #endif
558 
559  KMP_MB();
560  __kmp_set_stack_info(gtid, (kmp_info_t *)thr);
561 
562  __kmp_check_stack_overlap((kmp_info_t *)thr);
563 
564  exit_val = __kmp_launch_thread((kmp_info_t *)thr);
565 
566 #ifdef KMP_BLOCK_SIGNALS
567  status = pthread_sigmask(SIG_SETMASK, &old_set, NULL);
568  KMP_CHECK_SYSFAIL("pthread_sigmask", status);
569 #endif /* KMP_BLOCK_SIGNALS */
570 
571  return exit_val;
572 }
573 
574 #if KMP_USE_MONITOR
575 /* The monitor thread controls all of the threads in the complex */
576 
577 static void *__kmp_launch_monitor(void *thr) {
578  int status, old_type, old_state;
579 #ifdef KMP_BLOCK_SIGNALS
580  sigset_t new_set;
581 #endif /* KMP_BLOCK_SIGNALS */
582  struct timespec interval;
583 
584  KMP_MB(); /* Flush all pending memory write invalidates. */
585 
586  KA_TRACE(10, ("__kmp_launch_monitor: #1 launched\n"));
587 
588  /* register us as the monitor thread */
589  __kmp_gtid_set_specific(KMP_GTID_MONITOR);
590 #ifdef KMP_TDATA_GTID
591  __kmp_gtid = KMP_GTID_MONITOR;
592 #endif
593 
594  KMP_MB();
595 
596 #if USE_ITT_BUILD
597  // Instruct Intel(R) Threading Tools to ignore monitor thread.
598  __kmp_itt_thread_ignore();
599 #endif /* USE_ITT_BUILD */
600 
601  __kmp_set_stack_info(((kmp_info_t *)thr)->th.th_info.ds.ds_gtid,
602  (kmp_info_t *)thr);
603 
604  __kmp_check_stack_overlap((kmp_info_t *)thr);
605 
606 #ifdef KMP_CANCEL_THREADS
607  status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type);
608  KMP_CHECK_SYSFAIL("pthread_setcanceltype", status);
609  // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads?
610  status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state);
611  KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
612 #endif
613 
614 #if KMP_REAL_TIME_FIX
615  // This is a potential fix which allows application with real-time scheduling
616  // policy work. However, decision about the fix is not made yet, so it is
617  // disabled by default.
618  { // Are program started with real-time scheduling policy?
619  int sched = sched_getscheduler(0);
620  if (sched == SCHED_FIFO || sched == SCHED_RR) {
621  // Yes, we are a part of real-time application. Try to increase the
622  // priority of the monitor.
623  struct sched_param param;
624  int max_priority = sched_get_priority_max(sched);
625  int rc;
626  KMP_WARNING(RealTimeSchedNotSupported);
627  sched_getparam(0, &param);
628  if (param.sched_priority < max_priority) {
629  param.sched_priority += 1;
630  rc = sched_setscheduler(0, sched, &param);
631  if (rc != 0) {
632  int error = errno;
633  kmp_msg_t err_code = KMP_ERR(error);
634  __kmp_msg(kmp_ms_warning, KMP_MSG(CantChangeMonitorPriority),
635  err_code, KMP_MSG(MonitorWillStarve), __kmp_msg_null);
636  if (__kmp_generate_warnings == kmp_warnings_off) {
637  __kmp_str_free(&err_code.str);
638  }
639  }
640  } else {
641  // We cannot abort here, because number of CPUs may be enough for all
642  // the threads, including the monitor thread, so application could
643  // potentially work...
644  __kmp_msg(kmp_ms_warning, KMP_MSG(RunningAtMaxPriority),
645  KMP_MSG(MonitorWillStarve), KMP_HNT(RunningAtMaxPriority),
646  __kmp_msg_null);
647  }
648  }
649  // AC: free thread that waits for monitor started
650  TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
651  }
652 #endif // KMP_REAL_TIME_FIX
653 
654  KMP_MB(); /* Flush all pending memory write invalidates. */
655 
656  if (__kmp_monitor_wakeups == 1) {
657  interval.tv_sec = 1;
658  interval.tv_nsec = 0;
659  } else {
660  interval.tv_sec = 0;
661  interval.tv_nsec = (KMP_NSEC_PER_SEC / __kmp_monitor_wakeups);
662  }
663 
664  KA_TRACE(10, ("__kmp_launch_monitor: #2 monitor\n"));
665 
666  while (!TCR_4(__kmp_global.g.g_done)) {
667  struct timespec now;
668  struct timeval tval;
669 
670  /* This thread monitors the state of the system */
671 
672  KA_TRACE(15, ("__kmp_launch_monitor: update\n"));
673 
674  status = gettimeofday(&tval, NULL);
675  KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
676  TIMEVAL_TO_TIMESPEC(&tval, &now);
677 
678  now.tv_sec += interval.tv_sec;
679  now.tv_nsec += interval.tv_nsec;
680 
681  if (now.tv_nsec >= KMP_NSEC_PER_SEC) {
682  now.tv_sec += 1;
683  now.tv_nsec -= KMP_NSEC_PER_SEC;
684  }
685 
686  status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex);
687  KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
688  // AC: the monitor should not fall asleep if g_done has been set
689  if (!TCR_4(__kmp_global.g.g_done)) { // check once more under mutex
690  status = pthread_cond_timedwait(&__kmp_wait_cv.c_cond,
691  &__kmp_wait_mx.m_mutex, &now);
692  if (status != 0) {
693  if (status != ETIMEDOUT && status != EINTR) {
694  KMP_SYSFAIL("pthread_cond_timedwait", status);
695  }
696  }
697  }
698  status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex);
699  KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
700 
701  TCW_4(__kmp_global.g.g_time.dt.t_value,
702  TCR_4(__kmp_global.g.g_time.dt.t_value) + 1);
703 
704  KMP_MB(); /* Flush all pending memory write invalidates. */
705  }
706 
707  KA_TRACE(10, ("__kmp_launch_monitor: #3 cleanup\n"));
708 
709 #ifdef KMP_BLOCK_SIGNALS
710  status = sigfillset(&new_set);
711  KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status);
712  status = pthread_sigmask(SIG_UNBLOCK, &new_set, NULL);
713  KMP_CHECK_SYSFAIL("pthread_sigmask", status);
714 #endif /* KMP_BLOCK_SIGNALS */
715 
716  KA_TRACE(10, ("__kmp_launch_monitor: #4 finished\n"));
717 
718  if (__kmp_global.g.g_abort != 0) {
719  /* now we need to terminate the worker threads */
720  /* the value of t_abort is the signal we caught */
721 
722  int gtid;
723 
724  KA_TRACE(10, ("__kmp_launch_monitor: #5 terminate sig=%d\n",
725  __kmp_global.g.g_abort));
726 
727  /* terminate the OpenMP worker threads */
728  /* TODO this is not valid for sibling threads!!
729  * the uber master might not be 0 anymore.. */
730  for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid)
731  __kmp_terminate_thread(gtid);
732 
733  __kmp_cleanup();
734 
735  KA_TRACE(10, ("__kmp_launch_monitor: #6 raise sig=%d\n",
736  __kmp_global.g.g_abort));
737 
738  if (__kmp_global.g.g_abort > 0)
739  raise(__kmp_global.g.g_abort);
740  }
741 
742  KA_TRACE(10, ("__kmp_launch_monitor: #7 exit\n"));
743 
744  return thr;
745 }
746 #endif // KMP_USE_MONITOR
747 
748 void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size) {
749  pthread_t handle;
750  pthread_attr_t thread_attr;
751  int status;
752 
753  th->th.th_info.ds.ds_gtid = gtid;
754 
755 #if KMP_STATS_ENABLED
756  // sets up worker thread stats
757  __kmp_acquire_tas_lock(&__kmp_stats_lock, gtid);
758 
759  // th->th.th_stats is used to transfer thread-specific stats-pointer to
760  // __kmp_launch_worker. So when thread is created (goes into
761  // __kmp_launch_worker) it will set its thread local pointer to
762  // th->th.th_stats
763  if (!KMP_UBER_GTID(gtid)) {
764  th->th.th_stats = __kmp_stats_list->push_back(gtid);
765  } else {
766  // For root threads, __kmp_stats_thread_ptr is set in __kmp_register_root(),
767  // so set the th->th.th_stats field to it.
768  th->th.th_stats = __kmp_stats_thread_ptr;
769  }
770  __kmp_release_tas_lock(&__kmp_stats_lock, gtid);
771 
772 #endif // KMP_STATS_ENABLED
773 
774  if (KMP_UBER_GTID(gtid)) {
775  KA_TRACE(10, ("__kmp_create_worker: uber thread (%d)\n", gtid));
776  th->th.th_info.ds.ds_thread = pthread_self();
777  __kmp_set_stack_info(gtid, th);
778  __kmp_check_stack_overlap(th);
779  return;
780  }
781 
782  KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid));
783 
784  KMP_MB(); /* Flush all pending memory write invalidates. */
785 
786 #ifdef KMP_THREAD_ATTR
787  status = pthread_attr_init(&thread_attr);
788  if (status != 0) {
789  __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null);
790  }
791  status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE);
792  if (status != 0) {
793  __kmp_fatal(KMP_MSG(CantSetWorkerState), KMP_ERR(status), __kmp_msg_null);
794  }
795 
796  /* Set stack size for this thread now.
797  The multiple of 2 is there because on some machines, requesting an unusual
798  stacksize causes the thread to have an offset before the dummy alloca()
799  takes place to create the offset. Since we want the user to have a
800  sufficient stacksize AND support a stack offset, we alloca() twice the
801  offset so that the upcoming alloca() does not eliminate any premade offset,
802  and also gives the user the stack space they requested for all threads */
803  stack_size += gtid * __kmp_stkoffset * 2;
804 
805  KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, "
806  "__kmp_stksize = %lu bytes, final stacksize = %lu bytes\n",
807  gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size));
808 
809 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
810  status = pthread_attr_setstacksize(&thread_attr, stack_size);
811 #ifdef KMP_BACKUP_STKSIZE
812  if (status != 0) {
813  if (!__kmp_env_stksize) {
814  stack_size = KMP_BACKUP_STKSIZE + gtid * __kmp_stkoffset;
815  __kmp_stksize = KMP_BACKUP_STKSIZE;
816  KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, "
817  "__kmp_stksize = %lu bytes, (backup) final stacksize = %lu "
818  "bytes\n",
819  gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size));
820  status = pthread_attr_setstacksize(&thread_attr, stack_size);
821  }
822  }
823 #endif /* KMP_BACKUP_STKSIZE */
824  if (status != 0) {
825  __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
826  KMP_HNT(ChangeWorkerStackSize), __kmp_msg_null);
827  }
828 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
829 
830 #endif /* KMP_THREAD_ATTR */
831 
832  status =
833  pthread_create(&handle, &thread_attr, __kmp_launch_worker, (void *)th);
834  if (status != 0 || !handle) { // ??? Why do we check handle??
835 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
836  if (status == EINVAL) {
837  __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
838  KMP_HNT(IncreaseWorkerStackSize), __kmp_msg_null);
839  }
840  if (status == ENOMEM) {
841  __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
842  KMP_HNT(DecreaseWorkerStackSize), __kmp_msg_null);
843  }
844 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
845  if (status == EAGAIN) {
846  __kmp_fatal(KMP_MSG(NoResourcesForWorkerThread), KMP_ERR(status),
847  KMP_HNT(Decrease_NUM_THREADS), __kmp_msg_null);
848  }
849  KMP_SYSFAIL("pthread_create", status);
850  }
851 
852  th->th.th_info.ds.ds_thread = handle;
853 
854 #ifdef KMP_THREAD_ATTR
855  status = pthread_attr_destroy(&thread_attr);
856  if (status) {
857  kmp_msg_t err_code = KMP_ERR(status);
858  __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code,
859  __kmp_msg_null);
860  if (__kmp_generate_warnings == kmp_warnings_off) {
861  __kmp_str_free(&err_code.str);
862  }
863  }
864 #endif /* KMP_THREAD_ATTR */
865 
866  KMP_MB(); /* Flush all pending memory write invalidates. */
867 
868  KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid));
869 
870 } // __kmp_create_worker
871 
872 #if KMP_USE_MONITOR
873 void __kmp_create_monitor(kmp_info_t *th) {
874  pthread_t handle;
875  pthread_attr_t thread_attr;
876  size_t size;
877  int status;
878  int auto_adj_size = FALSE;
879 
880  if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) {
881  // We don't need monitor thread in case of MAX_BLOCKTIME
882  KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of "
883  "MAX blocktime\n"));
884  th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op
885  th->th.th_info.ds.ds_gtid = 0;
886  return;
887  }
888  KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n"));
889 
890  KMP_MB(); /* Flush all pending memory write invalidates. */
891 
892  th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR;
893  th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR;
894 #if KMP_REAL_TIME_FIX
895  TCW_4(__kmp_global.g.g_time.dt.t_value,
896  -1); // Will use it for synchronization a bit later.
897 #else
898  TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
899 #endif // KMP_REAL_TIME_FIX
900 
901 #ifdef KMP_THREAD_ATTR
902  if (__kmp_monitor_stksize == 0) {
903  __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
904  auto_adj_size = TRUE;
905  }
906  status = pthread_attr_init(&thread_attr);
907  if (status != 0) {
908  __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null);
909  }
910  status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE);
911  if (status != 0) {
912  __kmp_fatal(KMP_MSG(CantSetMonitorState), KMP_ERR(status), __kmp_msg_null);
913  }
914 
915 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
916  status = pthread_attr_getstacksize(&thread_attr, &size);
917  KMP_CHECK_SYSFAIL("pthread_attr_getstacksize", status);
918 #else
919  size = __kmp_sys_min_stksize;
920 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
921 #endif /* KMP_THREAD_ATTR */
922 
923  if (__kmp_monitor_stksize == 0) {
924  __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
925  }
926  if (__kmp_monitor_stksize < __kmp_sys_min_stksize) {
927  __kmp_monitor_stksize = __kmp_sys_min_stksize;
928  }
929 
930  KA_TRACE(10, ("__kmp_create_monitor: default stacksize = %lu bytes,"
931  "requested stacksize = %lu bytes\n",
932  size, __kmp_monitor_stksize));
933 
934 retry:
935 
936 /* Set stack size for this thread now. */
937 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
938  KA_TRACE(10, ("__kmp_create_monitor: setting stacksize = %lu bytes,",
939  __kmp_monitor_stksize));
940  status = pthread_attr_setstacksize(&thread_attr, __kmp_monitor_stksize);
941  if (status != 0) {
942  if (auto_adj_size) {
943  __kmp_monitor_stksize *= 2;
944  goto retry;
945  }
946  kmp_msg_t err_code = KMP_ERR(status);
947  __kmp_msg(kmp_ms_warning, // should this be fatal? BB
948  KMP_MSG(CantSetMonitorStackSize, (long int)__kmp_monitor_stksize),
949  err_code, KMP_HNT(ChangeMonitorStackSize), __kmp_msg_null);
950  if (__kmp_generate_warnings == kmp_warnings_off) {
951  __kmp_str_free(&err_code.str);
952  }
953  }
954 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
955 
956  status =
957  pthread_create(&handle, &thread_attr, __kmp_launch_monitor, (void *)th);
958 
959  if (status != 0) {
960 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
961  if (status == EINVAL) {
962  if (auto_adj_size && (__kmp_monitor_stksize < (size_t)0x40000000)) {
963  __kmp_monitor_stksize *= 2;
964  goto retry;
965  }
966  __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize),
967  KMP_ERR(status), KMP_HNT(IncreaseMonitorStackSize),
968  __kmp_msg_null);
969  }
970  if (status == ENOMEM) {
971  __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize),
972  KMP_ERR(status), KMP_HNT(DecreaseMonitorStackSize),
973  __kmp_msg_null);
974  }
975 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
976  if (status == EAGAIN) {
977  __kmp_fatal(KMP_MSG(NoResourcesForMonitorThread), KMP_ERR(status),
978  KMP_HNT(DecreaseNumberOfThreadsInUse), __kmp_msg_null);
979  }
980  KMP_SYSFAIL("pthread_create", status);
981  }
982 
983  th->th.th_info.ds.ds_thread = handle;
984 
985 #if KMP_REAL_TIME_FIX
986  // Wait for the monitor thread is really started and set its *priority*.
987  KMP_DEBUG_ASSERT(sizeof(kmp_uint32) ==
988  sizeof(__kmp_global.g.g_time.dt.t_value));
989  __kmp_wait_4((kmp_uint32 volatile *)&__kmp_global.g.g_time.dt.t_value, -1,
990  &__kmp_neq_4, NULL);
991 #endif // KMP_REAL_TIME_FIX
992 
993 #ifdef KMP_THREAD_ATTR
994  status = pthread_attr_destroy(&thread_attr);
995  if (status != 0) {
996  kmp_msg_t err_code = KMP_ERR(status);
997  __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code,
998  __kmp_msg_null);
999  if (__kmp_generate_warnings == kmp_warnings_off) {
1000  __kmp_str_free(&err_code.str);
1001  }
1002  }
1003 #endif
1004 
1005  KMP_MB(); /* Flush all pending memory write invalidates. */
1006 
1007  KA_TRACE(10, ("__kmp_create_monitor: monitor created %#.8lx\n",
1008  th->th.th_info.ds.ds_thread));
1009 
1010 } // __kmp_create_monitor
1011 #endif // KMP_USE_MONITOR
1012 
1013 void __kmp_exit_thread(int exit_status) {
1014  pthread_exit((void *)(intptr_t)exit_status);
1015 } // __kmp_exit_thread
1016 
1017 #if KMP_USE_MONITOR
1018 void __kmp_resume_monitor();
1019 
1020 void __kmp_reap_monitor(kmp_info_t *th) {
1021  int status;
1022  void *exit_val;
1023 
1024  KA_TRACE(10, ("__kmp_reap_monitor: try to reap monitor thread with handle"
1025  " %#.8lx\n",
1026  th->th.th_info.ds.ds_thread));
1027 
1028  // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR.
1029  // If both tid and gtid are 0, it means the monitor did not ever start.
1030  // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down.
1031  KMP_DEBUG_ASSERT(th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid);
1032  if (th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR) {
1033  KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n"));
1034  return;
1035  }
1036 
1037  KMP_MB(); /* Flush all pending memory write invalidates. */
1038 
1039  /* First, check to see whether the monitor thread exists to wake it up. This
1040  is to avoid performance problem when the monitor sleeps during
1041  blocktime-size interval */
1042 
1043  status = pthread_kill(th->th.th_info.ds.ds_thread, 0);
1044  if (status != ESRCH) {
1045  __kmp_resume_monitor(); // Wake up the monitor thread
1046  }
1047  KA_TRACE(10, ("__kmp_reap_monitor: try to join with monitor\n"));
1048  status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val);
1049  if (exit_val != th) {
1050  __kmp_fatal(KMP_MSG(ReapMonitorError), KMP_ERR(status), __kmp_msg_null);
1051  }
1052 
1053  th->th.th_info.ds.ds_tid = KMP_GTID_DNE;
1054  th->th.th_info.ds.ds_gtid = KMP_GTID_DNE;
1055 
1056  KA_TRACE(10, ("__kmp_reap_monitor: done reaping monitor thread with handle"
1057  " %#.8lx\n",
1058  th->th.th_info.ds.ds_thread));
1059 
1060  KMP_MB(); /* Flush all pending memory write invalidates. */
1061 }
1062 #endif // KMP_USE_MONITOR
1063 
1064 void __kmp_reap_worker(kmp_info_t *th) {
1065  int status;
1066  void *exit_val;
1067 
1068  KMP_MB(); /* Flush all pending memory write invalidates. */
1069 
1070  KA_TRACE(
1071  10, ("__kmp_reap_worker: try to reap T#%d\n", th->th.th_info.ds.ds_gtid));
1072 
1073  status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val);
1074 #ifdef KMP_DEBUG
1075  /* Don't expose these to the user until we understand when they trigger */
1076  if (status != 0) {
1077  __kmp_fatal(KMP_MSG(ReapWorkerError), KMP_ERR(status), __kmp_msg_null);
1078  }
1079  if (exit_val != th) {
1080  KA_TRACE(10, ("__kmp_reap_worker: worker T#%d did not reap properly, "
1081  "exit_val = %p\n",
1082  th->th.th_info.ds.ds_gtid, exit_val));
1083  }
1084 #endif /* KMP_DEBUG */
1085 
1086  KA_TRACE(10, ("__kmp_reap_worker: done reaping T#%d\n",
1087  th->th.th_info.ds.ds_gtid));
1088 
1089  KMP_MB(); /* Flush all pending memory write invalidates. */
1090 }
1091 
1092 #if KMP_HANDLE_SIGNALS
1093 
1094 static void __kmp_null_handler(int signo) {
1095  // Do nothing, for doing SIG_IGN-type actions.
1096 } // __kmp_null_handler
1097 
1098 static void __kmp_team_handler(int signo) {
1099  if (__kmp_global.g.g_abort == 0) {
1100 /* Stage 1 signal handler, let's shut down all of the threads */
1101 #ifdef KMP_DEBUG
1102  __kmp_debug_printf("__kmp_team_handler: caught signal = %d\n", signo);
1103 #endif
1104  switch (signo) {
1105  case SIGHUP:
1106  case SIGINT:
1107  case SIGQUIT:
1108  case SIGILL:
1109  case SIGABRT:
1110  case SIGFPE:
1111  case SIGBUS:
1112  case SIGSEGV:
1113 #ifdef SIGSYS
1114  case SIGSYS:
1115 #endif
1116  case SIGTERM:
1117  if (__kmp_debug_buf) {
1118  __kmp_dump_debug_buffer();
1119  }
1120  KMP_MB(); // Flush all pending memory write invalidates.
1121  TCW_4(__kmp_global.g.g_abort, signo);
1122  KMP_MB(); // Flush all pending memory write invalidates.
1123  TCW_4(__kmp_global.g.g_done, TRUE);
1124  KMP_MB(); // Flush all pending memory write invalidates.
1125  break;
1126  default:
1127 #ifdef KMP_DEBUG
1128  __kmp_debug_printf("__kmp_team_handler: unknown signal type");
1129 #endif
1130  break;
1131  }
1132  }
1133 } // __kmp_team_handler
1134 
1135 static void __kmp_sigaction(int signum, const struct sigaction *act,
1136  struct sigaction *oldact) {
1137  int rc = sigaction(signum, act, oldact);
1138  KMP_CHECK_SYSFAIL_ERRNO("sigaction", rc);
1139 }
1140 
1141 static void __kmp_install_one_handler(int sig, sig_func_t handler_func,
1142  int parallel_init) {
1143  KMP_MB(); // Flush all pending memory write invalidates.
1144  KB_TRACE(60,
1145  ("__kmp_install_one_handler( %d, ..., %d )\n", sig, parallel_init));
1146  if (parallel_init) {
1147  struct sigaction new_action;
1148  struct sigaction old_action;
1149  new_action.sa_handler = handler_func;
1150  new_action.sa_flags = 0;
1151  sigfillset(&new_action.sa_mask);
1152  __kmp_sigaction(sig, &new_action, &old_action);
1153  if (old_action.sa_handler == __kmp_sighldrs[sig].sa_handler) {
1154  sigaddset(&__kmp_sigset, sig);
1155  } else {
1156  // Restore/keep user's handler if one previously installed.
1157  __kmp_sigaction(sig, &old_action, NULL);
1158  }
1159  } else {
1160  // Save initial/system signal handlers to see if user handlers installed.
1161  __kmp_sigaction(sig, NULL, &__kmp_sighldrs[sig]);
1162  }
1163  KMP_MB(); // Flush all pending memory write invalidates.
1164 } // __kmp_install_one_handler
1165 
1166 static void __kmp_remove_one_handler(int sig) {
1167  KB_TRACE(60, ("__kmp_remove_one_handler( %d )\n", sig));
1168  if (sigismember(&__kmp_sigset, sig)) {
1169  struct sigaction old;
1170  KMP_MB(); // Flush all pending memory write invalidates.
1171  __kmp_sigaction(sig, &__kmp_sighldrs[sig], &old);
1172  if ((old.sa_handler != __kmp_team_handler) &&
1173  (old.sa_handler != __kmp_null_handler)) {
1174  // Restore the users signal handler.
1175  KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, "
1176  "restoring: sig=%d\n",
1177  sig));
1178  __kmp_sigaction(sig, &old, NULL);
1179  }
1180  sigdelset(&__kmp_sigset, sig);
1181  KMP_MB(); // Flush all pending memory write invalidates.
1182  }
1183 } // __kmp_remove_one_handler
1184 
1185 void __kmp_install_signals(int parallel_init) {
1186  KB_TRACE(10, ("__kmp_install_signals( %d )\n", parallel_init));
1187  if (__kmp_handle_signals || !parallel_init) {
1188  // If ! parallel_init, we do not install handlers, just save original
1189  // handlers. Let us do it even __handle_signals is 0.
1190  sigemptyset(&__kmp_sigset);
1191  __kmp_install_one_handler(SIGHUP, __kmp_team_handler, parallel_init);
1192  __kmp_install_one_handler(SIGINT, __kmp_team_handler, parallel_init);
1193  __kmp_install_one_handler(SIGQUIT, __kmp_team_handler, parallel_init);
1194  __kmp_install_one_handler(SIGILL, __kmp_team_handler, parallel_init);
1195  __kmp_install_one_handler(SIGABRT, __kmp_team_handler, parallel_init);
1196  __kmp_install_one_handler(SIGFPE, __kmp_team_handler, parallel_init);
1197  __kmp_install_one_handler(SIGBUS, __kmp_team_handler, parallel_init);
1198  __kmp_install_one_handler(SIGSEGV, __kmp_team_handler, parallel_init);
1199 #ifdef SIGSYS
1200  __kmp_install_one_handler(SIGSYS, __kmp_team_handler, parallel_init);
1201 #endif // SIGSYS
1202  __kmp_install_one_handler(SIGTERM, __kmp_team_handler, parallel_init);
1203 #ifdef SIGPIPE
1204  __kmp_install_one_handler(SIGPIPE, __kmp_team_handler, parallel_init);
1205 #endif // SIGPIPE
1206  }
1207 } // __kmp_install_signals
1208 
1209 void __kmp_remove_signals(void) {
1210  int sig;
1211  KB_TRACE(10, ("__kmp_remove_signals()\n"));
1212  for (sig = 1; sig < NSIG; ++sig) {
1213  __kmp_remove_one_handler(sig);
1214  }
1215 } // __kmp_remove_signals
1216 
1217 #endif // KMP_HANDLE_SIGNALS
1218 
1219 void __kmp_enable(int new_state) {
1220 #ifdef KMP_CANCEL_THREADS
1221  int status, old_state;
1222  status = pthread_setcancelstate(new_state, &old_state);
1223  KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
1224  KMP_DEBUG_ASSERT(old_state == PTHREAD_CANCEL_DISABLE);
1225 #endif
1226 }
1227 
1228 void __kmp_disable(int *old_state) {
1229 #ifdef KMP_CANCEL_THREADS
1230  int status;
1231  status = pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, old_state);
1232  KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
1233 #endif
1234 }
1235 
1236 static void __kmp_atfork_prepare(void) {
1237  __kmp_acquire_bootstrap_lock(&__kmp_initz_lock);
1238  __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock);
1239 }
1240 
1241 static void __kmp_atfork_parent(void) {
1242  __kmp_release_bootstrap_lock(&__kmp_initz_lock);
1243  __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
1244 }
1245 
1246 /* Reset the library so execution in the child starts "all over again" with
1247  clean data structures in initial states. Don't worry about freeing memory
1248  allocated by parent, just abandon it to be safe. */
1249 static void __kmp_atfork_child(void) {
1250  __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
1251  /* TODO make sure this is done right for nested/sibling */
1252  // ATT: Memory leaks are here? TODO: Check it and fix.
1253  /* KMP_ASSERT( 0 ); */
1254 
1255  ++__kmp_fork_count;
1256 
1257 #if KMP_AFFINITY_SUPPORTED
1258 #if KMP_OS_LINUX
1259  // reset the affinity in the child to the initial thread
1260  // affinity in the parent
1261  kmp_set_thread_affinity_mask_initial();
1262 #endif
1263  // Set default not to bind threads tightly in the child (we’re expecting
1264  // over-subscription after the fork and this can improve things for
1265  // scripting languages that use OpenMP inside process-parallel code).
1266  __kmp_affinity_type = affinity_none;
1267  if (__kmp_nested_proc_bind.bind_types != NULL) {
1268  __kmp_nested_proc_bind.bind_types[0] = proc_bind_false;
1269  }
1270 #endif // KMP_AFFINITY_SUPPORTED
1271 
1272  __kmp_init_runtime = FALSE;
1273 #if KMP_USE_MONITOR
1274  __kmp_init_monitor = 0;
1275 #endif
1276  __kmp_init_parallel = FALSE;
1277  __kmp_init_middle = FALSE;
1278  __kmp_init_serial = FALSE;
1279  TCW_4(__kmp_init_gtid, FALSE);
1280  __kmp_init_common = FALSE;
1281 
1282  TCW_4(__kmp_init_user_locks, FALSE);
1283 #if !KMP_USE_DYNAMIC_LOCK
1284  __kmp_user_lock_table.used = 1;
1285  __kmp_user_lock_table.allocated = 0;
1286  __kmp_user_lock_table.table = NULL;
1287  __kmp_lock_blocks = NULL;
1288 #endif
1289 
1290  __kmp_all_nth = 0;
1291  TCW_4(__kmp_nth, 0);
1292 
1293  __kmp_thread_pool = NULL;
1294  __kmp_thread_pool_insert_pt = NULL;
1295  __kmp_team_pool = NULL;
1296 
1297  /* Must actually zero all the *cache arguments passed to __kmpc_threadprivate
1298  here so threadprivate doesn't use stale data */
1299  KA_TRACE(10, ("__kmp_atfork_child: checking cache address list %p\n",
1300  __kmp_threadpriv_cache_list));
1301 
1302  while (__kmp_threadpriv_cache_list != NULL) {
1303 
1304  if (*__kmp_threadpriv_cache_list->addr != NULL) {
1305  KC_TRACE(50, ("__kmp_atfork_child: zeroing cache at address %p\n",
1306  &(*__kmp_threadpriv_cache_list->addr)));
1307 
1308  *__kmp_threadpriv_cache_list->addr = NULL;
1309  }
1310  __kmp_threadpriv_cache_list = __kmp_threadpriv_cache_list->next;
1311  }
1312 
1313  __kmp_init_runtime = FALSE;
1314 
1315  /* reset statically initialized locks */
1316  __kmp_init_bootstrap_lock(&__kmp_initz_lock);
1317  __kmp_init_bootstrap_lock(&__kmp_stdio_lock);
1318  __kmp_init_bootstrap_lock(&__kmp_console_lock);
1319  __kmp_init_bootstrap_lock(&__kmp_task_team_lock);
1320 
1321 #if USE_ITT_BUILD
1322  __kmp_itt_reset(); // reset ITT's global state
1323 #endif /* USE_ITT_BUILD */
1324 
1325  /* This is necessary to make sure no stale data is left around */
1326  /* AC: customers complain that we use unsafe routines in the atfork
1327  handler. Mathworks: dlsym() is unsafe. We call dlsym and dlopen
1328  in dynamic_link when check the presence of shared tbbmalloc library.
1329  Suggestion is to make the library initialization lazier, similar
1330  to what done for __kmpc_begin(). */
1331  // TODO: synchronize all static initializations with regular library
1332  // startup; look at kmp_global.cpp and etc.
1333  //__kmp_internal_begin ();
1334 }
1335 
1336 void __kmp_register_atfork(void) {
1337  if (__kmp_need_register_atfork) {
1338  int status = pthread_atfork(__kmp_atfork_prepare, __kmp_atfork_parent,
1339  __kmp_atfork_child);
1340  KMP_CHECK_SYSFAIL("pthread_atfork", status);
1341  __kmp_need_register_atfork = FALSE;
1342  }
1343 }
1344 
1345 void __kmp_suspend_initialize(void) {
1346  int status;
1347  status = pthread_mutexattr_init(&__kmp_suspend_mutex_attr);
1348  KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status);
1349  status = pthread_condattr_init(&__kmp_suspend_cond_attr);
1350  KMP_CHECK_SYSFAIL("pthread_condattr_init", status);
1351 }
1352 
1353 void __kmp_suspend_initialize_thread(kmp_info_t *th) {
1354  ANNOTATE_HAPPENS_AFTER(&th->th.th_suspend_init_count);
1355  int old_value = KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init_count);
1356  int new_value = __kmp_fork_count + 1;
1357  // Return if already initialized
1358  if (old_value == new_value)
1359  return;
1360  // Wait, then return if being initialized
1361  if (old_value == -1 ||
1362  !__kmp_atomic_compare_store(&th->th.th_suspend_init_count, old_value,
1363  -1)) {
1364  while (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init_count) != new_value) {
1365  KMP_CPU_PAUSE();
1366  }
1367  } else {
1368  // Claim to be the initializer and do initializations
1369  int status;
1370  status = pthread_cond_init(&th->th.th_suspend_cv.c_cond,
1371  &__kmp_suspend_cond_attr);
1372  KMP_CHECK_SYSFAIL("pthread_cond_init", status);
1373  status = pthread_mutex_init(&th->th.th_suspend_mx.m_mutex,
1374  &__kmp_suspend_mutex_attr);
1375  KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
1376  KMP_ATOMIC_ST_REL(&th->th.th_suspend_init_count, new_value);
1377  ANNOTATE_HAPPENS_BEFORE(&th->th.th_suspend_init_count);
1378  }
1379 }
1380 
1381 void __kmp_suspend_uninitialize_thread(kmp_info_t *th) {
1382  if (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init_count) > __kmp_fork_count) {
1383  /* this means we have initialize the suspension pthread objects for this
1384  thread in this instance of the process */
1385  int status;
1386 
1387  status = pthread_cond_destroy(&th->th.th_suspend_cv.c_cond);
1388  if (status != 0 && status != EBUSY) {
1389  KMP_SYSFAIL("pthread_cond_destroy", status);
1390  }
1391  status = pthread_mutex_destroy(&th->th.th_suspend_mx.m_mutex);
1392  if (status != 0 && status != EBUSY) {
1393  KMP_SYSFAIL("pthread_mutex_destroy", status);
1394  }
1395  --th->th.th_suspend_init_count;
1396  KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init_count) ==
1397  __kmp_fork_count);
1398  }
1399 }
1400 
1401 // return true if lock obtained, false otherwise
1402 int __kmp_try_suspend_mx(kmp_info_t *th) {
1403  return (pthread_mutex_trylock(&th->th.th_suspend_mx.m_mutex) == 0);
1404 }
1405 
1406 void __kmp_lock_suspend_mx(kmp_info_t *th) {
1407  int status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex);
1408  KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1409 }
1410 
1411 void __kmp_unlock_suspend_mx(kmp_info_t *th) {
1412  int status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1413  KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1414 }
1415 
1416 /* This routine puts the calling thread to sleep after setting the
1417  sleep bit for the indicated flag variable to true. */
1418 template <class C>
1419 static inline void __kmp_suspend_template(int th_gtid, C *flag) {
1420  KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_suspend);
1421  kmp_info_t *th = __kmp_threads[th_gtid];
1422  int status;
1423  typename C::flag_t old_spin;
1424 
1425  KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag = %p\n", th_gtid,
1426  flag->get()));
1427 
1428  __kmp_suspend_initialize_thread(th);
1429 
1430  status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex);
1431  KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1432 
1433  KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for spin(%p)\n",
1434  th_gtid, flag->get()));
1435 
1436  /* TODO: shouldn't this use release semantics to ensure that
1437  __kmp_suspend_initialize_thread gets called first? */
1438  old_spin = flag->set_sleeping();
1439  if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME &&
1440  __kmp_pause_status != kmp_soft_paused) {
1441  flag->unset_sleeping();
1442  status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1443  KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1444  return;
1445  }
1446  KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for spin(%p)==%x,"
1447  " was %x\n",
1448  th_gtid, flag->get(), flag->load(), old_spin));
1449 
1450  if (flag->done_check_val(old_spin)) {
1451  old_spin = flag->unset_sleeping();
1452  KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit "
1453  "for spin(%p)\n",
1454  th_gtid, flag->get()));
1455  } else {
1456  /* Encapsulate in a loop as the documentation states that this may
1457  "with low probability" return when the condition variable has
1458  not been signaled or broadcast */
1459  int deactivated = FALSE;
1460  TCW_PTR(th->th.th_sleep_loc, (void *)flag);
1461 
1462  while (flag->is_sleeping()) {
1463 #ifdef DEBUG_SUSPEND
1464  char buffer[128];
1465  __kmp_suspend_count++;
1466  __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1467  __kmp_printf("__kmp_suspend_template: suspending T#%d: %s\n", th_gtid,
1468  buffer);
1469 #endif
1470  // Mark the thread as no longer active (only in the first iteration of the
1471  // loop).
1472  if (!deactivated) {
1473  th->th.th_active = FALSE;
1474  if (th->th.th_active_in_pool) {
1475  th->th.th_active_in_pool = FALSE;
1476  KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth);
1477  KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0);
1478  }
1479  deactivated = TRUE;
1480  }
1481 
1482 #if USE_SUSPEND_TIMEOUT
1483  struct timespec now;
1484  struct timeval tval;
1485  int msecs;
1486 
1487  status = gettimeofday(&tval, NULL);
1488  KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1489  TIMEVAL_TO_TIMESPEC(&tval, &now);
1490 
1491  msecs = (4 * __kmp_dflt_blocktime) + 200;
1492  now.tv_sec += msecs / 1000;
1493  now.tv_nsec += (msecs % 1000) * 1000;
1494 
1495  KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform "
1496  "pthread_cond_timedwait\n",
1497  th_gtid));
1498  status = pthread_cond_timedwait(&th->th.th_suspend_cv.c_cond,
1499  &th->th.th_suspend_mx.m_mutex, &now);
1500 #else
1501  KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform"
1502  " pthread_cond_wait\n",
1503  th_gtid));
1504  status = pthread_cond_wait(&th->th.th_suspend_cv.c_cond,
1505  &th->th.th_suspend_mx.m_mutex);
1506 #endif
1507 
1508  if ((status != 0) && (status != EINTR) && (status != ETIMEDOUT)) {
1509  KMP_SYSFAIL("pthread_cond_wait", status);
1510  }
1511 #ifdef KMP_DEBUG
1512  if (status == ETIMEDOUT) {
1513  if (flag->is_sleeping()) {
1514  KF_TRACE(100,
1515  ("__kmp_suspend_template: T#%d timeout wakeup\n", th_gtid));
1516  } else {
1517  KF_TRACE(2, ("__kmp_suspend_template: T#%d timeout wakeup, sleep bit "
1518  "not set!\n",
1519  th_gtid));
1520  }
1521  } else if (flag->is_sleeping()) {
1522  KF_TRACE(100,
1523  ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid));
1524  }
1525 #endif
1526  } // while
1527 
1528  // Mark the thread as active again (if it was previous marked as inactive)
1529  if (deactivated) {
1530  th->th.th_active = TRUE;
1531  if (TCR_4(th->th.th_in_pool)) {
1532  KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth);
1533  th->th.th_active_in_pool = TRUE;
1534  }
1535  }
1536  }
1537 #ifdef DEBUG_SUSPEND
1538  {
1539  char buffer[128];
1540  __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1541  __kmp_printf("__kmp_suspend_template: T#%d has awakened: %s\n", th_gtid,
1542  buffer);
1543  }
1544 #endif
1545 
1546  status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1547  KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1548  KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid));
1549 }
1550 
1551 void __kmp_suspend_32(int th_gtid, kmp_flag_32 *flag) {
1552  __kmp_suspend_template(th_gtid, flag);
1553 }
1554 void __kmp_suspend_64(int th_gtid, kmp_flag_64 *flag) {
1555  __kmp_suspend_template(th_gtid, flag);
1556 }
1557 void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) {
1558  __kmp_suspend_template(th_gtid, flag);
1559 }
1560 
1561 /* This routine signals the thread specified by target_gtid to wake up
1562  after setting the sleep bit indicated by the flag argument to FALSE.
1563  The target thread must already have called __kmp_suspend_template() */
1564 template <class C>
1565 static inline void __kmp_resume_template(int target_gtid, C *flag) {
1566  KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume);
1567  kmp_info_t *th = __kmp_threads[target_gtid];
1568  int status;
1569 
1570 #ifdef KMP_DEBUG
1571  int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
1572 #endif
1573 
1574  KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n",
1575  gtid, target_gtid));
1576  KMP_DEBUG_ASSERT(gtid != target_gtid);
1577 
1578  __kmp_suspend_initialize_thread(th);
1579 
1580  status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex);
1581  KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1582 
1583  if (!flag) { // coming from __kmp_null_resume_wrapper
1584  flag = (C *)CCAST(void *, th->th.th_sleep_loc);
1585  }
1586 
1587  // First, check if the flag is null or its type has changed. If so, someone
1588  // else woke it up.
1589  if (!flag || flag->get_type() != flag->get_ptr_type()) { // get_ptr_type
1590  // simply shows what
1591  // flag was cast to
1592  KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
1593  "awake: flag(%p)\n",
1594  gtid, target_gtid, NULL));
1595  status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1596  KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1597  return;
1598  } else { // if multiple threads are sleeping, flag should be internally
1599  // referring to a specific thread here
1600  typename C::flag_t old_spin = flag->unset_sleeping();
1601  if (!flag->is_sleeping_val(old_spin)) {
1602  KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
1603  "awake: flag(%p): "
1604  "%u => %u\n",
1605  gtid, target_gtid, flag->get(), old_spin, flag->load()));
1606  status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1607  KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1608  return;
1609  }
1610  KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset "
1611  "sleep bit for flag's loc(%p): "
1612  "%u => %u\n",
1613  gtid, target_gtid, flag->get(), old_spin, flag->load()));
1614  }
1615  TCW_PTR(th->th.th_sleep_loc, NULL);
1616 
1617 #ifdef DEBUG_SUSPEND
1618  {
1619  char buffer[128];
1620  __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1621  __kmp_printf("__kmp_resume_template: T#%d resuming T#%d: %s\n", gtid,
1622  target_gtid, buffer);
1623  }
1624 #endif
1625  status = pthread_cond_signal(&th->th.th_suspend_cv.c_cond);
1626  KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
1627  status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1628  KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1629  KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up"
1630  " for T#%d\n",
1631  gtid, target_gtid));
1632 }
1633 
1634 void __kmp_resume_32(int target_gtid, kmp_flag_32 *flag) {
1635  __kmp_resume_template(target_gtid, flag);
1636 }
1637 void __kmp_resume_64(int target_gtid, kmp_flag_64 *flag) {
1638  __kmp_resume_template(target_gtid, flag);
1639 }
1640 void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) {
1641  __kmp_resume_template(target_gtid, flag);
1642 }
1643 
1644 #if KMP_USE_MONITOR
1645 void __kmp_resume_monitor() {
1646  KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume);
1647  int status;
1648 #ifdef KMP_DEBUG
1649  int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
1650  KF_TRACE(30, ("__kmp_resume_monitor: T#%d wants to wakeup T#%d enter\n", gtid,
1651  KMP_GTID_MONITOR));
1652  KMP_DEBUG_ASSERT(gtid != KMP_GTID_MONITOR);
1653 #endif
1654  status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex);
1655  KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1656 #ifdef DEBUG_SUSPEND
1657  {
1658  char buffer[128];
1659  __kmp_print_cond(buffer, &__kmp_wait_cv.c_cond);
1660  __kmp_printf("__kmp_resume_monitor: T#%d resuming T#%d: %s\n", gtid,
1661  KMP_GTID_MONITOR, buffer);
1662  }
1663 #endif
1664  status = pthread_cond_signal(&__kmp_wait_cv.c_cond);
1665  KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
1666  status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex);
1667  KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1668  KF_TRACE(30, ("__kmp_resume_monitor: T#%d exiting after signaling wake up"
1669  " for T#%d\n",
1670  gtid, KMP_GTID_MONITOR));
1671 }
1672 #endif // KMP_USE_MONITOR
1673 
1674 void __kmp_yield() { sched_yield(); }
1675 
1676 void __kmp_gtid_set_specific(int gtid) {
1677  if (__kmp_init_gtid) {
1678  int status;
1679  status = pthread_setspecific(__kmp_gtid_threadprivate_key,
1680  (void *)(intptr_t)(gtid + 1));
1681  KMP_CHECK_SYSFAIL("pthread_setspecific", status);
1682  } else {
1683  KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n"));
1684  }
1685 }
1686 
1687 int __kmp_gtid_get_specific() {
1688  int gtid;
1689  if (!__kmp_init_gtid) {
1690  KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning "
1691  "KMP_GTID_SHUTDOWN\n"));
1692  return KMP_GTID_SHUTDOWN;
1693  }
1694  gtid = (int)(size_t)pthread_getspecific(__kmp_gtid_threadprivate_key);
1695  if (gtid == 0) {
1696  gtid = KMP_GTID_DNE;
1697  } else {
1698  gtid--;
1699  }
1700  KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n",
1701  __kmp_gtid_threadprivate_key, gtid));
1702  return gtid;
1703 }
1704 
1705 double __kmp_read_cpu_time(void) {
1706  /*clock_t t;*/
1707  struct tms buffer;
1708 
1709  /*t =*/times(&buffer);
1710 
1711  return (buffer.tms_utime + buffer.tms_cutime) / (double)CLOCKS_PER_SEC;
1712 }
1713 
1714 int __kmp_read_system_info(struct kmp_sys_info *info) {
1715  int status;
1716  struct rusage r_usage;
1717 
1718  memset(info, 0, sizeof(*info));
1719 
1720  status = getrusage(RUSAGE_SELF, &r_usage);
1721  KMP_CHECK_SYSFAIL_ERRNO("getrusage", status);
1722 
1723  // The maximum resident set size utilized (in kilobytes)
1724  info->maxrss = r_usage.ru_maxrss;
1725  // The number of page faults serviced without any I/O
1726  info->minflt = r_usage.ru_minflt;
1727  // The number of page faults serviced that required I/O
1728  info->majflt = r_usage.ru_majflt;
1729  // The number of times a process was "swapped" out of memory
1730  info->nswap = r_usage.ru_nswap;
1731  // The number of times the file system had to perform input
1732  info->inblock = r_usage.ru_inblock;
1733  // The number of times the file system had to perform output
1734  info->oublock = r_usage.ru_oublock;
1735  // The number of times a context switch was voluntarily
1736  info->nvcsw = r_usage.ru_nvcsw;
1737  // The number of times a context switch was forced
1738  info->nivcsw = r_usage.ru_nivcsw;
1739 
1740  return (status != 0);
1741 }
1742 
1743 void __kmp_read_system_time(double *delta) {
1744  double t_ns;
1745  struct timeval tval;
1746  struct timespec stop;
1747  int status;
1748 
1749  status = gettimeofday(&tval, NULL);
1750  KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1751  TIMEVAL_TO_TIMESPEC(&tval, &stop);
1752  t_ns = TS2NS(stop) - TS2NS(__kmp_sys_timer_data.start);
1753  *delta = (t_ns * 1e-9);
1754 }
1755 
1756 void __kmp_clear_system_time(void) {
1757  struct timeval tval;
1758  int status;
1759  status = gettimeofday(&tval, NULL);
1760  KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1761  TIMEVAL_TO_TIMESPEC(&tval, &__kmp_sys_timer_data.start);
1762 }
1763 
1764 static int __kmp_get_xproc(void) {
1765 
1766  int r = 0;
1767 
1768 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \
1769  KMP_OS_OPENBSD || KMP_OS_HURD || KMP_OS_KFREEBSD
1770 
1771  r = sysconf(_SC_NPROCESSORS_ONLN);
1772 
1773 #elif KMP_OS_DARWIN
1774 
1775  // Bug C77011 High "OpenMP Threads and number of active cores".
1776 
1777  // Find the number of available CPUs.
1778  kern_return_t rc;
1779  host_basic_info_data_t info;
1780  mach_msg_type_number_t num = HOST_BASIC_INFO_COUNT;
1781  rc = host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&info, &num);
1782  if (rc == 0 && num == HOST_BASIC_INFO_COUNT) {
1783  // Cannot use KA_TRACE() here because this code works before trace support
1784  // is initialized.
1785  r = info.avail_cpus;
1786  } else {
1787  KMP_WARNING(CantGetNumAvailCPU);
1788  KMP_INFORM(AssumedNumCPU);
1789  }
1790 
1791 #else
1792 
1793 #error "Unknown or unsupported OS."
1794 
1795 #endif
1796 
1797  return r > 0 ? r : 2; /* guess value of 2 if OS told us 0 */
1798 
1799 } // __kmp_get_xproc
1800 
1801 int __kmp_read_from_file(char const *path, char const *format, ...) {
1802  int result;
1803  va_list args;
1804 
1805  va_start(args, format);
1806  FILE *f = fopen(path, "rb");
1807  if (f == NULL)
1808  return 0;
1809  result = vfscanf(f, format, args);
1810  fclose(f);
1811 
1812  return result;
1813 }
1814 
1815 void __kmp_runtime_initialize(void) {
1816  int status;
1817  pthread_mutexattr_t mutex_attr;
1818  pthread_condattr_t cond_attr;
1819 
1820  if (__kmp_init_runtime) {
1821  return;
1822  }
1823 
1824 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64)
1825  if (!__kmp_cpuinfo.initialized) {
1826  __kmp_query_cpuid(&__kmp_cpuinfo);
1827  }
1828 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
1829 
1830  __kmp_xproc = __kmp_get_xproc();
1831 
1832 #if ! KMP_32_BIT_ARCH
1833  struct rlimit rlim;
1834  // read stack size of calling thread, save it as default for worker threads;
1835  // this should be done before reading environment variables
1836  status = getrlimit(RLIMIT_STACK, &rlim);
1837  if (status == 0) { // success?
1838  __kmp_stksize = rlim.rlim_cur;
1839  __kmp_check_stksize(&__kmp_stksize); // check value and adjust if needed
1840  }
1841 #endif /* KMP_32_BIT_ARCH */
1842 
1843  if (sysconf(_SC_THREADS)) {
1844 
1845  /* Query the maximum number of threads */
1846  __kmp_sys_max_nth = sysconf(_SC_THREAD_THREADS_MAX);
1847  if (__kmp_sys_max_nth == -1) {
1848  /* Unlimited threads for NPTL */
1849  __kmp_sys_max_nth = INT_MAX;
1850  } else if (__kmp_sys_max_nth <= 1) {
1851  /* Can't tell, just use PTHREAD_THREADS_MAX */
1852  __kmp_sys_max_nth = KMP_MAX_NTH;
1853  }
1854 
1855  /* Query the minimum stack size */
1856  __kmp_sys_min_stksize = sysconf(_SC_THREAD_STACK_MIN);
1857  if (__kmp_sys_min_stksize <= 1) {
1858  __kmp_sys_min_stksize = KMP_MIN_STKSIZE;
1859  }
1860  }
1861 
1862  /* Set up minimum number of threads to switch to TLS gtid */
1863  __kmp_tls_gtid_min = KMP_TLS_GTID_MIN;
1864 
1865  status = pthread_key_create(&__kmp_gtid_threadprivate_key,
1866  __kmp_internal_end_dest);
1867  KMP_CHECK_SYSFAIL("pthread_key_create", status);
1868  status = pthread_mutexattr_init(&mutex_attr);
1869  KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status);
1870  status = pthread_mutex_init(&__kmp_wait_mx.m_mutex, &mutex_attr);
1871  KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
1872  status = pthread_condattr_init(&cond_attr);
1873  KMP_CHECK_SYSFAIL("pthread_condattr_init", status);
1874  status = pthread_cond_init(&__kmp_wait_cv.c_cond, &cond_attr);
1875  KMP_CHECK_SYSFAIL("pthread_cond_init", status);
1876 #if USE_ITT_BUILD
1877  __kmp_itt_initialize();
1878 #endif /* USE_ITT_BUILD */
1879 
1880  __kmp_init_runtime = TRUE;
1881 }
1882 
1883 void __kmp_runtime_destroy(void) {
1884  int status;
1885 
1886  if (!__kmp_init_runtime) {
1887  return; // Nothing to do.
1888  }
1889 
1890 #if USE_ITT_BUILD
1891  __kmp_itt_destroy();
1892 #endif /* USE_ITT_BUILD */
1893 
1894  status = pthread_key_delete(__kmp_gtid_threadprivate_key);
1895  KMP_CHECK_SYSFAIL("pthread_key_delete", status);
1896 
1897  status = pthread_mutex_destroy(&__kmp_wait_mx.m_mutex);
1898  if (status != 0 && status != EBUSY) {
1899  KMP_SYSFAIL("pthread_mutex_destroy", status);
1900  }
1901  status = pthread_cond_destroy(&__kmp_wait_cv.c_cond);
1902  if (status != 0 && status != EBUSY) {
1903  KMP_SYSFAIL("pthread_cond_destroy", status);
1904  }
1905 #if KMP_AFFINITY_SUPPORTED
1906  __kmp_affinity_uninitialize();
1907 #endif
1908 
1909  __kmp_init_runtime = FALSE;
1910 }
1911 
1912 /* Put the thread to sleep for a time period */
1913 /* NOTE: not currently used anywhere */
1914 void __kmp_thread_sleep(int millis) { sleep((millis + 500) / 1000); }
1915 
1916 /* Calculate the elapsed wall clock time for the user */
1917 void __kmp_elapsed(double *t) {
1918  int status;
1919 #ifdef FIX_SGI_CLOCK
1920  struct timespec ts;
1921 
1922  status = clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts);
1923  KMP_CHECK_SYSFAIL_ERRNO("clock_gettime", status);
1924  *t =
1925  (double)ts.tv_nsec * (1.0 / (double)KMP_NSEC_PER_SEC) + (double)ts.tv_sec;
1926 #else
1927  struct timeval tv;
1928 
1929  status = gettimeofday(&tv, NULL);
1930  KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1931  *t =
1932  (double)tv.tv_usec * (1.0 / (double)KMP_USEC_PER_SEC) + (double)tv.tv_sec;
1933 #endif
1934 }
1935 
1936 /* Calculate the elapsed wall clock tick for the user */
1937 void __kmp_elapsed_tick(double *t) { *t = 1 / (double)CLOCKS_PER_SEC; }
1938 
1939 /* Return the current time stamp in nsec */
1940 kmp_uint64 __kmp_now_nsec() {
1941  struct timeval t;
1942  gettimeofday(&t, NULL);
1943  kmp_uint64 nsec = (kmp_uint64)KMP_NSEC_PER_SEC * (kmp_uint64)t.tv_sec +
1944  (kmp_uint64)1000 * (kmp_uint64)t.tv_usec;
1945  return nsec;
1946 }
1947 
1948 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1949 /* Measure clock ticks per millisecond */
1950 void __kmp_initialize_system_tick() {
1951  kmp_uint64 now, nsec2, diff;
1952  kmp_uint64 delay = 100000; // 50~100 usec on most machines.
1953  kmp_uint64 nsec = __kmp_now_nsec();
1954  kmp_uint64 goal = __kmp_hardware_timestamp() + delay;
1955  while ((now = __kmp_hardware_timestamp()) < goal)
1956  ;
1957  nsec2 = __kmp_now_nsec();
1958  diff = nsec2 - nsec;
1959  if (diff > 0) {
1960  kmp_uint64 tpms = (kmp_uint64)(1e6 * (delay + (now - goal)) / diff);
1961  if (tpms > 0)
1962  __kmp_ticks_per_msec = tpms;
1963  }
1964 }
1965 #endif
1966 
1967 /* Determine whether the given address is mapped into the current address
1968  space. */
1969 
1970 int __kmp_is_address_mapped(void *addr) {
1971 
1972  int found = 0;
1973  int rc;
1974 
1975 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_HURD || KMP_OS_KFREEBSD
1976 
1977  /* On GNUish OSes, read the /proc/<pid>/maps pseudo-file to get all the address
1978  ranges mapped into the address space. */
1979 
1980  char *name = __kmp_str_format("/proc/%d/maps", getpid());
1981  FILE *file = NULL;
1982 
1983  file = fopen(name, "r");
1984  KMP_ASSERT(file != NULL);
1985 
1986  for (;;) {
1987 
1988  void *beginning = NULL;
1989  void *ending = NULL;
1990  char perms[5];
1991 
1992  rc = fscanf(file, "%p-%p %4s %*[^\n]\n", &beginning, &ending, perms);
1993  if (rc == EOF) {
1994  break;
1995  }
1996  KMP_ASSERT(rc == 3 &&
1997  KMP_STRLEN(perms) == 4); // Make sure all fields are read.
1998 
1999  // Ending address is not included in the region, but beginning is.
2000  if ((addr >= beginning) && (addr < ending)) {
2001  perms[2] = 0; // 3th and 4th character does not matter.
2002  if (strcmp(perms, "rw") == 0) {
2003  // Memory we are looking for should be readable and writable.
2004  found = 1;
2005  }
2006  break;
2007  }
2008  }
2009 
2010  // Free resources.
2011  fclose(file);
2012  KMP_INTERNAL_FREE(name);
2013 
2014 #elif KMP_OS_DARWIN
2015 
2016  /* On OS X*, /proc pseudo filesystem is not available. Try to read memory
2017  using vm interface. */
2018 
2019  int buffer;
2020  vm_size_t count;
2021  rc = vm_read_overwrite(
2022  mach_task_self(), // Task to read memory of.
2023  (vm_address_t)(addr), // Address to read from.
2024  1, // Number of bytes to be read.
2025  (vm_address_t)(&buffer), // Address of buffer to save read bytes in.
2026  &count // Address of var to save number of read bytes in.
2027  );
2028  if (rc == 0) {
2029  // Memory successfully read.
2030  found = 1;
2031  }
2032 
2033 #elif KMP_OS_NETBSD
2034 
2035  int mib[5];
2036  mib[0] = CTL_VM;
2037  mib[1] = VM_PROC;
2038  mib[2] = VM_PROC_MAP;
2039  mib[3] = getpid();
2040  mib[4] = sizeof(struct kinfo_vmentry);
2041 
2042  size_t size;
2043  rc = sysctl(mib, __arraycount(mib), NULL, &size, NULL, 0);
2044  KMP_ASSERT(!rc);
2045  KMP_ASSERT(size);
2046 
2047  size = size * 4 / 3;
2048  struct kinfo_vmentry *kiv = (struct kinfo_vmentry *)KMP_INTERNAL_MALLOC(size);
2049  KMP_ASSERT(kiv);
2050 
2051  rc = sysctl(mib, __arraycount(mib), kiv, &size, NULL, 0);
2052  KMP_ASSERT(!rc);
2053  KMP_ASSERT(size);
2054 
2055  for (size_t i = 0; i < size; i++) {
2056  if (kiv[i].kve_start >= (uint64_t)addr &&
2057  kiv[i].kve_end <= (uint64_t)addr) {
2058  found = 1;
2059  break;
2060  }
2061  }
2062  KMP_INTERNAL_FREE(kiv);
2063 #elif KMP_OS_DRAGONFLY || KMP_OS_OPENBSD
2064 
2065  // FIXME(DragonFly, OpenBSD): Implement this
2066  found = 1;
2067 
2068 #else
2069 
2070 #error "Unknown or unsupported OS"
2071 
2072 #endif
2073 
2074  return found;
2075 
2076 } // __kmp_is_address_mapped
2077 
2078 #ifdef USE_LOAD_BALANCE
2079 
2080 #if KMP_OS_DARWIN || KMP_OS_NETBSD
2081 
2082 // The function returns the rounded value of the system load average
2083 // during given time interval which depends on the value of
2084 // __kmp_load_balance_interval variable (default is 60 sec, other values
2085 // may be 300 sec or 900 sec).
2086 // It returns -1 in case of error.
2087 int __kmp_get_load_balance(int max) {
2088  double averages[3];
2089  int ret_avg = 0;
2090 
2091  int res = getloadavg(averages, 3);
2092 
2093  // Check __kmp_load_balance_interval to determine which of averages to use.
2094  // getloadavg() may return the number of samples less than requested that is
2095  // less than 3.
2096  if (__kmp_load_balance_interval < 180 && (res >= 1)) {
2097  ret_avg = averages[0]; // 1 min
2098  } else if ((__kmp_load_balance_interval >= 180 &&
2099  __kmp_load_balance_interval < 600) &&
2100  (res >= 2)) {
2101  ret_avg = averages[1]; // 5 min
2102  } else if ((__kmp_load_balance_interval >= 600) && (res == 3)) {
2103  ret_avg = averages[2]; // 15 min
2104  } else { // Error occurred
2105  return -1;
2106  }
2107 
2108  return ret_avg;
2109 }
2110 
2111 #else // Linux* OS
2112 
2113 // The fuction returns number of running (not sleeping) threads, or -1 in case
2114 // of error. Error could be reported if Linux* OS kernel too old (without
2115 // "/proc" support). Counting running threads stops if max running threads
2116 // encountered.
2117 int __kmp_get_load_balance(int max) {
2118  static int permanent_error = 0;
2119  static int glb_running_threads = 0; // Saved count of the running threads for
2120  // the thread balance algortihm
2121  static double glb_call_time = 0; /* Thread balance algorithm call time */
2122 
2123  int running_threads = 0; // Number of running threads in the system.
2124 
2125  DIR *proc_dir = NULL; // Handle of "/proc/" directory.
2126  struct dirent *proc_entry = NULL;
2127 
2128  kmp_str_buf_t task_path; // "/proc/<pid>/task/<tid>/" path.
2129  DIR *task_dir = NULL; // Handle of "/proc/<pid>/task/<tid>/" directory.
2130  struct dirent *task_entry = NULL;
2131  int task_path_fixed_len;
2132 
2133  kmp_str_buf_t stat_path; // "/proc/<pid>/task/<tid>/stat" path.
2134  int stat_file = -1;
2135  int stat_path_fixed_len;
2136 
2137  int total_processes = 0; // Total number of processes in system.
2138  int total_threads = 0; // Total number of threads in system.
2139 
2140  double call_time = 0.0;
2141 
2142  __kmp_str_buf_init(&task_path);
2143  __kmp_str_buf_init(&stat_path);
2144 
2145  __kmp_elapsed(&call_time);
2146 
2147  if (glb_call_time &&
2148  (call_time - glb_call_time < __kmp_load_balance_interval)) {
2149  running_threads = glb_running_threads;
2150  goto finish;
2151  }
2152 
2153  glb_call_time = call_time;
2154 
2155  // Do not spend time on scanning "/proc/" if we have a permanent error.
2156  if (permanent_error) {
2157  running_threads = -1;
2158  goto finish;
2159  }
2160 
2161  if (max <= 0) {
2162  max = INT_MAX;
2163  }
2164 
2165  // Open "/proc/" directory.
2166  proc_dir = opendir("/proc");
2167  if (proc_dir == NULL) {
2168  // Cannot open "/prroc/". Probably the kernel does not support it. Return an
2169  // error now and in subsequent calls.
2170  running_threads = -1;
2171  permanent_error = 1;
2172  goto finish;
2173  }
2174 
2175  // Initialize fixed part of task_path. This part will not change.
2176  __kmp_str_buf_cat(&task_path, "/proc/", 6);
2177  task_path_fixed_len = task_path.used; // Remember number of used characters.
2178 
2179  proc_entry = readdir(proc_dir);
2180  while (proc_entry != NULL) {
2181  // Proc entry is a directory and name starts with a digit. Assume it is a
2182  // process' directory.
2183  if (proc_entry->d_type == DT_DIR && isdigit(proc_entry->d_name[0])) {
2184 
2185  ++total_processes;
2186  // Make sure init process is the very first in "/proc", so we can replace
2187  // strcmp( proc_entry->d_name, "1" ) == 0 with simpler total_processes ==
2188  // 1. We are going to check that total_processes == 1 => d_name == "1" is
2189  // true (where "=>" is implication). Since C++ does not have => operator,
2190  // let us replace it with its equivalent: a => b == ! a || b.
2191  KMP_DEBUG_ASSERT(total_processes != 1 ||
2192  strcmp(proc_entry->d_name, "1") == 0);
2193 
2194  // Construct task_path.
2195  task_path.used = task_path_fixed_len; // Reset task_path to "/proc/".
2196  __kmp_str_buf_cat(&task_path, proc_entry->d_name,
2197  KMP_STRLEN(proc_entry->d_name));
2198  __kmp_str_buf_cat(&task_path, "/task", 5);
2199 
2200  task_dir = opendir(task_path.str);
2201  if (task_dir == NULL) {
2202  // Process can finish between reading "/proc/" directory entry and
2203  // opening process' "task/" directory. So, in general case we should not
2204  // complain, but have to skip this process and read the next one. But on
2205  // systems with no "task/" support we will spend lot of time to scan
2206  // "/proc/" tree again and again without any benefit. "init" process
2207  // (its pid is 1) should exist always, so, if we cannot open
2208  // "/proc/1/task/" directory, it means "task/" is not supported by
2209  // kernel. Report an error now and in the future.
2210  if (strcmp(proc_entry->d_name, "1") == 0) {
2211  running_threads = -1;
2212  permanent_error = 1;
2213  goto finish;
2214  }
2215  } else {
2216  // Construct fixed part of stat file path.
2217  __kmp_str_buf_clear(&stat_path);
2218  __kmp_str_buf_cat(&stat_path, task_path.str, task_path.used);
2219  __kmp_str_buf_cat(&stat_path, "/", 1);
2220  stat_path_fixed_len = stat_path.used;
2221 
2222  task_entry = readdir(task_dir);
2223  while (task_entry != NULL) {
2224  // It is a directory and name starts with a digit.
2225  if (proc_entry->d_type == DT_DIR && isdigit(task_entry->d_name[0])) {
2226  ++total_threads;
2227 
2228  // Consruct complete stat file path. Easiest way would be:
2229  // __kmp_str_buf_print( & stat_path, "%s/%s/stat", task_path.str,
2230  // task_entry->d_name );
2231  // but seriae of __kmp_str_buf_cat works a bit faster.
2232  stat_path.used =
2233  stat_path_fixed_len; // Reset stat path to its fixed part.
2234  __kmp_str_buf_cat(&stat_path, task_entry->d_name,
2235  KMP_STRLEN(task_entry->d_name));
2236  __kmp_str_buf_cat(&stat_path, "/stat", 5);
2237 
2238  // Note: Low-level API (open/read/close) is used. High-level API
2239  // (fopen/fclose) works ~ 30 % slower.
2240  stat_file = open(stat_path.str, O_RDONLY);
2241  if (stat_file == -1) {
2242  // We cannot report an error because task (thread) can terminate
2243  // just before reading this file.
2244  } else {
2245  /* Content of "stat" file looks like:
2246  24285 (program) S ...
2247 
2248  It is a single line (if program name does not include funny
2249  symbols). First number is a thread id, then name of executable
2250  file name in paretheses, then state of the thread. We need just
2251  thread state.
2252 
2253  Good news: Length of program name is 15 characters max. Longer
2254  names are truncated.
2255 
2256  Thus, we need rather short buffer: 15 chars for program name +
2257  2 parenthesis, + 3 spaces + ~7 digits of pid = 37.
2258 
2259  Bad news: Program name may contain special symbols like space,
2260  closing parenthesis, or even new line. This makes parsing
2261  "stat" file not 100 % reliable. In case of fanny program names
2262  parsing may fail (report incorrect thread state).
2263 
2264  Parsing "status" file looks more promissing (due to different
2265  file structure and escaping special symbols) but reading and
2266  parsing of "status" file works slower.
2267  -- ln
2268  */
2269  char buffer[65];
2270  int len;
2271  len = read(stat_file, buffer, sizeof(buffer) - 1);
2272  if (len >= 0) {
2273  buffer[len] = 0;
2274  // Using scanf:
2275  // sscanf( buffer, "%*d (%*s) %c ", & state );
2276  // looks very nice, but searching for a closing parenthesis
2277  // works a bit faster.
2278  char *close_parent = strstr(buffer, ") ");
2279  if (close_parent != NULL) {
2280  char state = *(close_parent + 2);
2281  if (state == 'R') {
2282  ++running_threads;
2283  if (running_threads >= max) {
2284  goto finish;
2285  }
2286  }
2287  }
2288  }
2289  close(stat_file);
2290  stat_file = -1;
2291  }
2292  }
2293  task_entry = readdir(task_dir);
2294  }
2295  closedir(task_dir);
2296  task_dir = NULL;
2297  }
2298  }
2299  proc_entry = readdir(proc_dir);
2300  }
2301 
2302  // There _might_ be a timing hole where the thread executing this
2303  // code get skipped in the load balance, and running_threads is 0.
2304  // Assert in the debug builds only!!!
2305  KMP_DEBUG_ASSERT(running_threads > 0);
2306  if (running_threads <= 0) {
2307  running_threads = 1;
2308  }
2309 
2310 finish: // Clean up and exit.
2311  if (proc_dir != NULL) {
2312  closedir(proc_dir);
2313  }
2314  __kmp_str_buf_free(&task_path);
2315  if (task_dir != NULL) {
2316  closedir(task_dir);
2317  }
2318  __kmp_str_buf_free(&stat_path);
2319  if (stat_file != -1) {
2320  close(stat_file);
2321  }
2322 
2323  glb_running_threads = running_threads;
2324 
2325  return running_threads;
2326 
2327 } // __kmp_get_load_balance
2328 
2329 #endif // KMP_OS_DARWIN
2330 
2331 #endif // USE_LOAD_BALANCE
2332 
2333 #if !(KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_MIC || \
2334  ((KMP_OS_LINUX || KMP_OS_DARWIN) && KMP_ARCH_AARCH64) || KMP_ARCH_PPC64)
2335 
2336 // we really only need the case with 1 argument, because CLANG always build
2337 // a struct of pointers to shared variables referenced in the outlined function
2338 int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int tid, int argc,
2339  void *p_argv[]
2340 #if OMPT_SUPPORT
2341  ,
2342  void **exit_frame_ptr
2343 #endif
2344  ) {
2345 #if OMPT_SUPPORT
2346  *exit_frame_ptr = OMPT_GET_FRAME_ADDRESS(0);
2347 #endif
2348 
2349  switch (argc) {
2350  default:
2351  fprintf(stderr, "Too many args to microtask: %d!\n", argc);
2352  fflush(stderr);
2353  exit(-1);
2354  case 0:
2355  (*pkfn)(&gtid, &tid);
2356  break;
2357  case 1:
2358  (*pkfn)(&gtid, &tid, p_argv[0]);
2359  break;
2360  case 2:
2361  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1]);
2362  break;
2363  case 3:
2364  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2]);
2365  break;
2366  case 4:
2367  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3]);
2368  break;
2369  case 5:
2370  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4]);
2371  break;
2372  case 6:
2373  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2374  p_argv[5]);
2375  break;
2376  case 7:
2377  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2378  p_argv[5], p_argv[6]);
2379  break;
2380  case 8:
2381  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2382  p_argv[5], p_argv[6], p_argv[7]);
2383  break;
2384  case 9:
2385  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2386  p_argv[5], p_argv[6], p_argv[7], p_argv[8]);
2387  break;
2388  case 10:
2389  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2390  p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9]);
2391  break;
2392  case 11:
2393  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2394  p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10]);
2395  break;
2396  case 12:
2397  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2398  p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2399  p_argv[11]);
2400  break;
2401  case 13:
2402  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2403  p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2404  p_argv[11], p_argv[12]);
2405  break;
2406  case 14:
2407  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2408  p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2409  p_argv[11], p_argv[12], p_argv[13]);
2410  break;
2411  case 15:
2412  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2413  p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2414  p_argv[11], p_argv[12], p_argv[13], p_argv[14]);
2415  break;
2416  }
2417 
2418 #if OMPT_SUPPORT
2419  *exit_frame_ptr = 0;
2420 #endif
2421 
2422  return 1;
2423 }
2424 
2425 #endif
2426 
2427 // end of file //
#define KMP_INIT_PARTITIONED_TIMERS(name)
Initializes the paritioned timers to begin with name.
Definition: kmp_stats.h:929