
novelWriter Documentation
Release 1.6.6

Veronica Berglyd Olsen

Tuesday, 25 October 2022 at 18:31

INTRODUCTION

1 Key Features 3

2 Overview 5

3 Getting Started 7

4 Running from Source 13

5 Customisations 17

6 How it Works 19

7 The User Interface 23

8 Formatting Your Text 29

9 Keyboard Shortcuts 33

10 Typographical Notes 37

11 Project Format Changes 39

12 Novel Projects 41

13 Novel Structure 47

14 Project Notes 51

15 Exporting Projects 53

16 File Locations 57

17 How Data is Stored 59

18 Running Tests 63

i

ii

novelWriter Documentation, Release 1.6.6

For Release: 1.6.6
Last Updated: Tuesday, 25 October 2022 at 18:31

novelWriter is an open source plain text editor designed for writing novels assembled from many smaller
text documents. It uses a minimal formatting syntax inspired by Markdown, and adds a meta data syntax
for comments, synopsis, and cross-referencing. It is designed to be a simple text editor that allows for
easy organisation of text and notes, using human readable text files as storage for robustness.

The project storage is suitable for version control software, and also well suited for file synchronisation
tools. All text is saved as plain text files with a meta data header. The core project structure is stored
in a single project XML file. Other meta data is primarily saved as JSON files. See the Project Storage
section for more details.

Any operating system that can run Python 3 and has the Qt 5 libraries should be able to run novelWriter.
It runs fine on Linux, Windows and macOS, and users have tested it on other platforms too. novelWriter
can be run directly from the Python source, installed from the pip tool. See Getting Started for more
details.

Note: Version 1.5 introduced a few changes that will require you to make a few minor modifications to
some of the headings in your project. It should be fairly quick and straightforward. Please see the Format
1.3 Changes section for more details.

Useful Links

• Website: https://novelwriter.io

• Documentation: https://novelwriter.readthedocs.io

• Source Code: https://github.com/vkbo/novelWriter

INTRODUCTION 1

https://novelwriter.io
https://novelwriter.readthedocs.io
https://github.com/vkbo/novelWriter

novelWriter Documentation, Release 1.6.6

• Source Releases: https://github.com/vkbo/novelWriter/releases

• Issue Tracker: https://github.com/vkbo/novelWriter/issues

• Feature Discussions: https://github.com/vkbo/novelWriter/discussions

• PyPi Project: https://pypi.org/project/novelWriter

2 INTRODUCTION

https://github.com/vkbo/novelWriter/releases
https://github.com/vkbo/novelWriter/issues
https://github.com/vkbo/novelWriter/discussions
https://pypi.org/project/novelWriter

CHAPTER

ONE

KEY FEATURES

novelWriter is a multi-document plain text editor using a markup syntax inspired by markdown to apply
simple formatting to the text. It is designed for writing novels, so the formatting features are limited.
Your novel project is organised as a collection of separate plain text documents instead of a single, large
document.

Below are some key features of novelWriter.

Focus on writing The aim of the user interface is to let the user focus on writing instead of spending
time formatting text. Formatting is therefore limited to a small set of formatting tags for simple
things like text emphasis and paragraph alignment. When you really want to focus on just writing,
you can switch the editor into Focus Mode where only the text editor window itself is vissible.

Keep an eye on your notes The main window can optionally show a document viewer to the right of the
editor. This view panel is intended for displaying another scene document, you character notes,
plot notes, or any other document you may need to reference while writing.

Organise your documents how you like You can split your novel project up into as many individual
documents as you want to. When you build the project, they are all glued together in the top-to-
bottom order in which they appear in the project tree. You can use as few text documents as you
like, but splitting the project up into chapters and scenes means you can easily reorder them using
the drag and drop feature.

Keep track of your plot elements All notes in your project can be assigned a tag you can reference
from any other document or notes. In fact, you can add a new tag under each heading of a note
if you need to be able to reference a specific section. Note tags are organised into categories with
specific reference keywords.

Get an overview of your plot elements In the Outline tab on the main window you can see an outline
of all the chapter and scene sections of your project. If they have any references in them, these are
listed in columns. You can also add a synopsis to each document, which can be listed here. You
have the option to add or remove columns of information from the outline. A subset of the outline
information is also available in the Novel tab under the main project tree.

Building your manuscript Whether you want to compile a manuscript, or export all your notes, or
generate an outline of your chapters and scenes with a synopsis, you can use the Build Novel Project
tool. The tool lets you select what information you want to include in the generated document, and
how it is formatted. You can send the result to a printer, a PDF, or to an Open Document file that
can be opened by most office type word processors.

3

novelWriter Documentation, Release 1.6.6

1.1 Screenshots

novelWriter with default system theme:

novelWriter with dark theme:

4 Chapter 1. Key Features

CHAPTER

TWO

OVERVIEW

novelWriter is built on Python 3, a cross platform programming language that doesn’t require a compiler
to build and run. That means that the code can run on your computer right out of the box, or from a zip
file.

While it is developed for Linux primarily, it runs just fine on Windows as well. It also works fine on
macOS, but the author is not a mac user so less attention is paid to that platform.

In order to run novelWriter, you also need a few additional packages. The user interface is built with Qt
5, a cross platform library for building graphical user interface applications.

For install instructions, see Getting Started.

For information on how to add spell check dictionaries, see Spell Check Dictionaries.

2.1 Using novelWriter

In order to use novelWriter effectively, you need to know the basics of how it works. The following
sections will explain the main principles. It starts with the basics, and gets more detailed as you read on.

How it Works – Essential Information This section explains the basics of how the application works
and what it can and cannot do.

The User Interface – Recommended Reading This section will give you a more detailed explanation
of what the various elements on the user interface do and how you can use them more effectively.

Formatting Your Text – Essential Information This section covers how you should format your text.
The editor is plain text, so text formatting requires some basic markup. The structure of your novel
is also inferred by how you use the title headings. Tags and references are implemented by simple
codes.

Keyboard Shortcuts – Optional / Lookup This section lists all the keyboard shortcuts in novelWriter
and what they do. Most of the shortcuts are also listed next to the menu items inside the app, so
this section is mostly for reference.

Typographical Notes – Optional This section gives you an overview of the special typographical sym-
bols available in novelWriter. The auto-replace feature can handle the insertion of standard quote
symbols for your language, and other special characters. If you use any symbols aside from these.
their intended use is explained here.

Project Format Changes – Optional This section is more technical and has an overview of changes
made to the way your project data is stored. The format has changed a bit from time to time,
and sometimes the changes require that you make small modifications to your project. Everything
you need to know is listed in this section.

5

https://www.python.org/
https://www.qt.io/
https://www.qt.io/

novelWriter Documentation, Release 1.6.6

2.2 Organising Your Projects

In addition to manage a collection of plain text files, novelWriter can interpret and map the structure of
your novel and show you additional information about its flow and content. In order to take advantage of
these features, you must structure your text in a specific way and add some meta data for it to extract.

Novel Projects – Essential Information This section explains how you organise the content of your
project, how to customise the text, and how to set up automated backups of your work.

Novel Structure – Essential Information This section covers the way your novel’s structure is encoded
into the text documents. It explains how the different levels of headings are used, and how you can
include information about characters, plot elements, and other meta data in your text.

Project Notes - Recommended Reading This section briefly describes what novelWriter does with the
note files you add to your project. Generally, the application doesn’t do much with them at all aside
from looking through them for tags you’ve set so that it knows which file to open when you click
on a reference.

Exporting Projects - Recommended Reading This section explains in more detail how the export tool
works. In particular how you can control the way chapter titles are formatted, and how scene and
section breaks are handled.

6 Chapter 2. Overview

CHAPTER

THREE

GETTING STARTED

If you are using Windows or a Debian-based Linux distribtuion, you can install novelWriter from package
installers. If you are on macOS, you have the option to run novelWriter from a standalone folder. See
Minimal Package Install. This option is also available for Windows and Linux. The third option is to
install novelWriter from the Python Package Index. See Install from PyPi.

Spell checking in novelWriter is provided by a third party library called Enchant. Generally, it should
pull dictionaries from your operating system automatically. However, on Windows they must be installed
manually. See Spell Check Dictionaries for more details.

Help Wanted

If you would like to help making more installers, the project is currently looking for people who can help
make releases for Red Hat-based Linux distros (RPM) and for macOS. See the issues posted for RPM
and macOS on GitHub.

3.1 Install on Windows

You can install novelWriter with both Python and library dependencies embedded using the Windows
Installer (setup.exe) file from the main website, or from the Releases page on GitHub. Installing it should
be straightforward.

If you have any issues, try uninstalling the previous version and making a fresh install. If you already
had a version installed via a different method, you should uninstall that first.

3.2 Install on Debian/Ubuntu/Mint

A Debian package can be downloaded from the main website, or from the Releases page on GitHub. This
package should work on both Debian, Ubuntu and Linux Mint.

If you prefer, you can also add the novelWriter repository on Launchpad to your package manager.

7

https://abiword.github.io/enchant/
https://github.com/vkbo/novelWriter/issues/907
https://github.com/vkbo/novelWriter/issues/867
https://github.com/vkbo/novelWriter
https://novelwriter.io
https://github.com/vkbo/novelWriter/releases
https://novelwriter.io
https://github.com/vkbo/novelWriter/releases

novelWriter Documentation, Release 1.6.6

3.2.1 Ubuntu and Mint

You can add the Ubuntu PPA and install novelWriter with the following commands.

sudo add-apt-repository ppa:vkbo/novelwriter
sudo apt update
sudo apt install novelwriter

If you want pre-releases, add the ppa:vkbo/novelwriter-pre repository instead.

3.2.2 Debian

Since this is a pure Python package, the Launchpad PPA can in principle also be used on Debian. How-
ever, the above command will fail to add the signing key.

Instead, run the following commands to add the repository and key:

sudo gpg --no-default-keyring --keyring /usr/share/keyrings/novelwriter-ppa-
→˓keyring.gpg --keyserver hkp://keyserver.ubuntu.com:80 --recv-keys␣
→˓F19F1FCE50043114
echo "deb [signed-by=/usr/share/keyrings/novelwriter-ppa-keyring.gpg] http://
→˓ppa.launchpad.net/vkbo/novelwriter/ubuntu focal main" | sudo tee /etc/apt/
→˓sources.list.d/novelwriter.list

Then run the update and install commands as for Ubuntu:

sudo apt update
sudo apt install novelwriter

Note: Please use the Ubuntu 20.04 (focal) packages for Debian. The newer Ubuntu packages use a
different compression algorithm that Debian doesn’t currently support.

3.3 Minimal Package Install

On the main website and on the Releases page on GitHub you will also find “Minimal Package” install
files for Windows, Linux and macOS. These are zip files of just the files you need to run novelWriter on
that specific platform.

These zip files don’t include any dependencies, so you must install them separately.

8 Chapter 3. Getting Started

https://launchpad.net/~vkbo/+archive/ubuntu/novelwriter
https://novelwriter.io
https://github.com/vkbo/novelWriter/releases

novelWriter Documentation, Release 1.6.6

3.3.1 Windows

First, make sure you have Python installed on your system. If you don’t, you can download it from
python.org. Python 3.6 or higher is required, but it is recommended that you install the latest version.

Make sure you select the “Add Python to PATH” option during installation, otherwise the python com-
mand will not work in the command line window.

When Python is installed, extract the novelWriter zip file and move the extracted folder to a suitable
location. You should probably not keep it on your desktop or in your downloads folder where it may be
accidentally deleted. Instead, move and rename it to for instance C:\novelWriter.

After you’ve got the folder where you want it, open it and double-click the file named
windows_install.bat. This will open a command line window and run the setup script to install
dependencies, and add desktop and start menu icons.

Running windows_uninstall.bat will reverse the process if you wish to uninstall. After that, you can
just delete the novelWriter folder.

3.3.2 Linux

On Linux you need to install the following packages on Debian-based distros, including Ubuntu and
Linux Mint:

sudo apt install python3-pyqt5 python3-lxml python3-enchant

On Fedora, you need the following packages:

sudo dnf install python3-qt5 python3-lxml python3-enchant

A standard desktop launcher can be installed via the main setup script. It will create the needed desktop
file and add it to the Applications menu. The necessary icons will also be installed, and a file association
with .nwx files added.

To set this up, run the following from inside the extracted novelWriter folder:

3.3. Minimal Package Install 9

https://www.python.org/downloads/windows

novelWriter Documentation, Release 1.6.6

python3 setup.py xdg-install

This installs icons for the current user. Run with sudo to install system-wide.

To uninstall the icons, run:

python3 setup.py xdg-uninstall

3.3.3 macOS

These instructions assume you’re using brew, and have Python and pip set up. If not, see the brew docs
for help. The main requirements for novelWriter are installed via the requirements file. You also need to
install the pyobjc package, so you should run:

pip3 install --user -r requirements.txt
pip3 install --user pyobjc

For spell checking you may also need to install the enchant package. It comes with a lot of default
dictionaries.

brew install enchant

With the dependencies in place, you can launch the novelWriter.py script directly to run novelWriter.

Note: Right now there isn’t a better integration with macOS available. Contributions from someone
more familiar with macOS would be very much appreciated. See the macOS issue on GitHub.

3.4 Install from PyPi

novelWriter is also available on the Python Package Index, or PyPi. This install method works on all
supported operating systems.

To install from PyPi you must first have the python and pip commands available on your system. If you
don’t, see specific instructions for your operating system in this documentation on how to get the Python
environment set up.

To install novelWriter from PyPi, use the following command:

pip install novelwriter

To upgrade an existing installation, use:

pip install --upgrade novelwriter

When installing via pip, novelWriter can be launched from command line with:

novelwriter

10 Chapter 3. Getting Started

https://docs.brew.sh/Homebrew-and-Python
https://github.com/vkbo/novelWriter/issues/867
https://pypi.org/project/novelWriter/

novelWriter Documentation, Release 1.6.6

Make sure the install location for pip is in your PATH variable. This is not always the case by default.

Note: On systems with both Python 2 and 3, you may have to replace the pip command with pip3.

3.4. Install from PyPi 11

novelWriter Documentation, Release 1.6.6

12 Chapter 3. Getting Started

CHAPTER

FOUR

RUNNING FROM SOURCE

This section describes various ways of running novelWriter directly from the source code, and how to
build the various components like the translation files and documentation.

Note: The text below assumes the command python corresponds to a Python 3 executable. Python 2
is now deprecated, but many systems still have both Python 2 and 3. For such systems, the command
python3 may be needed instead. On Linux, the scripts can also be made executable and run without the
python command. Likewise, pip may need to be replaced with pip3.

4.1 Dependencies

novelWriter has been designed to rely on as few dependencies as possible. Aside from the packages
needed to communicate with the Qt GUI libraries, only one package is required for handling the XML
format of the main project file. Everything else is handled with standard Python libraries.

The following Python packages are needed to run novelWriter:

• PyQt5 – needed for connecting with the Qt5 libraries.

• lxml – needed for full XML support.

• PyEnchant – needed for spell checking (optional).

PyQt/Qt should be at least 5.3, but ideally 5.10 or higher for nearly all features to work. For instance,
searching using regular expressions with full Unicode support requires 5.13. There is no known minimum
version requirement for package lxml, but the code was originally written with 4.2, which is therefore
set as the minimum. It may work on lower versions. You have to test it.

If you want spell checking, you must install the PyEnchant package. The spell check library must be at
least 3.0 to work with Windows. On Linux, 2.0 also works fine.

If you install from PyPi, these dependencies should be installed automatically. If you install from source,
dependencies can still be installed from PyPi with:

pip install -r requirements.txt

13

novelWriter Documentation, Release 1.6.6

4.2 Install from Source

You can download the latest version of novelWriter from the source repository on GitHub and run the
setup manually. It is equivalent to what the pip install command does, and it installs novelWriter to
the default location for Python packages.

This step requires that you have setuptools installed on your system. If you don’t have it installed, it
can usually be installed from your distro’s repository. For Debian and Ubuntu this is achieved with:

sudo apt install python3-setuptools

The package is also available from PyPi:

pip install --user setuptools

With setuptools in place, novelWriter can be installed to the user space with:

python setup.py install --user

Tip: The main setup script has a number of options that may be useful to you. You can list them by
running python setup.py help.

4.3 Building the Translation Files

If you installed novelWriter from a package, the translation files should be pre-built and included. If
you’re running novelWriter from the source code, you will need to generate the files yourself. The files
you need will be written to the novelwriter/assets/i18n folder, and will have the .qm file extension.

You can build the .qm files with:

python setup.py qtlrelease

This requires that the Qt Linguist tool is installed on your system. On Ubuntu and Debian, the needed
package is called qttools5-dev-tools.

Note: If you want to improve novelWriter with translation files for another language, or update an
existing translation, instructions for how to contribute can be found in the README.md file in the i18n
folder of the source code.

14 Chapter 4. Running from Source

https://github.com/vkbo/novelWriter/releases

novelWriter Documentation, Release 1.6.6

4.4 Building the Documentation

A local copy of this documentation can be generated as HTML. This requires the following Python
packages from PyPi:

pip install furo sphinx

The documentation can then be built from the root folder in the source code by running:

make -C docs html

If successful, the documentation should be available in the docs/build/html folder and you can open
the index.html file in your browser.

You can also build a PDF manual from the documentation using the setup script:

python setup.py manual

This will build the documentation as a PDF using LaTeX. The file will then be copied into the assets
folder and made available in the Help menu in novelWriter. The Sphinx build system has a few extra
dependencies when building the PDF. Please check the Sphinx Docs for more details.

4.4. Building the Documentation 15

https://www.sphinx-doc.org/

novelWriter Documentation, Release 1.6.6

16 Chapter 4. Running from Source

CHAPTER

FIVE

CUSTOMISATIONS

There are a few ways you can customise novelWriter youself. Currently, you can add new GUI themes,
your own syntax themes, and install additional dictionaries.

5.1 Spell Check Dictionaries

novelWriter uses Enchant as the spell checking tool. Depending on you operating system, it may or may
not load installed spell check dictionaries.

Linux On Linux, you generally only have to install hunspell or aspell dictionaries on your system like
you do for other applications. See your distro’s documentation for how to do this.

Windows For Windows, English is included with the installation. For other languages you have to down-
load and add dictionaries yourself. You can find the various dictionaries on the Free Desktop web-
site. You should find a folder for your language, if it is available at all, and download the files
ending with .aff and .dic. These files must then be copied to the following location:

C:\Users\<USER>\AppData\Local\enchant\hunspell

This assumes your user profile is stored at C:\Users\<USER>. The last one or two folders may
not exist, so you may need to create them.

5.2 Syntax and GUI Themes

Adding your own GUI and syntax themes is relatively easy. The themes are defined by simple plain text
config files with meta data and colour settings.

In order to make your own versions, first copy one of the existing files to your local computer and modify
it as you like.

• The existing syntax themes are stored in novelwriter/assets/syntax.

• The existing GUI themes are stored in novelwriter/assets/themes.

Remember to also change the name of your theme by modifying the name setting at the top of the file.

For novelWriter to be able to locate the custom theme files, you must copy them to the Application Data
location in your home or user area. There should be a folder there named syntax for syntax themes and
just themes for GUI themes.

Once the files are copied there, they should show up in Preferences with the label you set as name inside
the file.

17

https://abiword.github.io/enchant/
https://cgit.freedesktop.org/libreoffice/dictionaries/tree/
https://github.com/vkbo/novelWriter/tree/main/novelwriter/assets/syntax
https://github.com/vkbo/novelWriter/tree/main/novelwriter/assets/themes

novelWriter Documentation, Release 1.6.6

5.2.1 Theme CSS Files

If you wish, you can also modify the CSS styles of the GUI in addition to change colour settings. This
is only available for GUI themes, and you do this by creating a file with the exact same file name as the
.conf file with colour settings and give it the .qss extension.

On Windows, file extensions may not be visible by default, so make sure you only have one file extension,
and don’t end up with two.

The QSS files are Qt Style Sheet files. See Qt’s The Style Sheet Syntax <https://doc.qt.io/qt-5/stylesheet-
syntax.html>`_ documentation for more details.

18 Chapter 5. Customisations

CHAPTER

SIX

HOW IT WORKS

The main features of novelWriter are listed in the Key Features section. Here, we go into some more
details on how they are implemented. Later on in this documentation, these features will be covered in
more detail.

6.1 GUI Layout and Design

The user interface of novelWriter is intended to be as minimalistic as practically possible, while at the
same time provide a complete set of features needed for writing a novel.

The main window does not have a toolbar like many other applications do. This reduces clutter, and
since the documents are formatted with style tags, is more or less redundant. However, most formatting
features supported are available through convenient keyboard shortcuts. They are also available in the
main menu so you don’t have to look up formatting codes every time you need them. However, a list of
all shortcuts can be found in the Keyboard Shortcuts section.

Note: novelWriter is not intended to be a full office type word processor. It doesn’t support images,
links, tables, and other complex structures and objects often needed for such documents. Formatting is
limited to headers, emphasis, text alignment, and a few other simple features.

6.1.1 Window Tabs and Areas

The main window is split in two, or optionally three, panels. The left-most panel contains the project
tree and all the documents in your project. The second panel is the document editor. An optional third
panel is a document viewer which can view any document in your project independently of what is open
in the document editor. It is not intended as a preview window, although you can use it for this as well as
it will apply the formatting tags you have specified. The main purpose of the viewer is for viewing your
notes next to your editor while you’re writing.

The editor also has a Focus Mode you can toggle either from the menu, or from the icon in the editor
header. When Focus Mode is enabled, all the user interface elements other than the document editor
itself are hidden away.

A second tab is also available on the main window. This is the Outline tab where the entire novel structure
can be displayed, with all the tags and references listed. Depending on how you structure your novel
documents, this outline can be quite different from your project tree. Your project tree lists individual
documents, your Outline tree lists the structure of the novel itself in terms of partitions, chapters and
scenes as it appears in the text of those documents.

19

novelWriter Documentation, Release 1.6.6

6.1.2 Colour Themes

The colour theme of the user interface defaults to that of the host operating system. Some other light and
dark colour themes are provided, and can be enabled in Preferences from the Tools menu. A number of
syntax highlighting themes are also available in Preferences. Icon themes for light and dark GUIs are
also available. The icons are based on the Typicons icon set designed by Stephen Hutchings.

Note: The GUI colour theme and the syntax highlighting theme are separate settings in Preferences.
If you switch to dark mode on the GUI, you should also switch the icon theme and syntax highlighting
theme.

6.2 Project Layout

This is a brief introduction to how you structure your writing projects. All of this will be covered in more
detail later.

The main point is that you are free to organise your project documents as you wish into subfolders, and
split the text between documents in whatever way suits you. All that matters to novelWriter is the linear
order the documents appear at in the project tree (top to bottom). The chapters, scenes and sections of
the novel are determined by the headings within those documents.

The four heading levels (H1 to H4) are treated as follows:

• H1 is used for the book title, and for partitions.

• H2 is used for chapter tiles.

• H3 is used for scene titles – optionally replaced by separators.

• H4 is for section titles within scenes, if such granularity is needed.

This header level structure is only taken into account for novel documents. For the project notes, the
header levels have no structural meaning, and the user is free to do whatever they want. See Novel
Structure and Project Notes for more details.

6.3 Project Export

The project can at any time be exported to a range of different formats through the Build Novel Project
tool. Natively, novelWriter supports export to Open Document, HTML5, and various flavours of Mark-
down.

The HTML5 export format is suitable for conversion by a number of other tools like Pandoc, or for
importing into word processors if the Open Document format isn’t suitable. In addition, printing and
printing to PDF is also possible.

You can also export the content of the project to a JSON file. This is useful if you want to write your own
processing script in for instance Python as the entire novel can be read into a Python dictionary with a
couple of lines of code. The JSON file can be populated either with HTML formatted text, or with the
raw text as typed into the novel documents. See Additional Export Options for more details.

20 Chapter 6. How it Works

https://github.com/stephenhutchings/typicons.font

novelWriter Documentation, Release 1.6.6

A number of filter options can be applied to the Build Novel Project tool, allowing you to export a draft
manuscript, a reference document of notes, an outline based on chapter and scene titles with a synopsis
each, and so on. See Exporting Projects for more details on export features and formats.

6.4 Project Storage

The files of a novelWriter project are stored in a dedicated project folder. The project structure is kept in
a file at the root of this folder called nwProject.nwx. All the document files and associated meta data
is stored in the other folders below the project folder. For more technical details about what all the files
mean and how they’re organised, see the How Data is Stored section.

This way of storing data was chosen for several reasons. Firstly, all the text you add to your project is
saved directly to your project folder in separate files. Only the project structure and the text you are
currently editing is stored in memory at any given time. Secondly, having multiple small files means it is
very easy to sync them between computers with standard file synchronisation tools. Thirdly, if you use
version control software to track the changes to your project, the file formats used for the files are well
suited. Also the JSON documents have line breaks and indents.

Note: Since novelWriter has to keep track of a bunch of files and folders when a project is open, it may
not run well on some virtual file systems. A file or folder must be accessible with exactly the path it was
saved or created with. An example where this is not the case is the way Google Drive is mapped on Linux
Gnome desktops using gvfs/gio.

Caution: You should not add additional files to the project folder yourself. Nor should you manually
edit files within it as a general rule. If you really must manually edit the text files, e.g. with some
automated task you want to perform, you need to rebuild the index when you open the project again.

Editing text files in the content folder is less risky as they are just plain text. Editing the main project
XML file, however, may make the project file unreadable and you may crash novelWriter and lose
project structure information and project settings.

6.4. Project Storage 21

novelWriter Documentation, Release 1.6.6

22 Chapter 6. How it Works

CHAPTER

SEVEN

THE USER INTERFACE

This sections covers in more detail what all the information on the user interface is for, and how you can
organise your project, and how you use the editor, viewer and outline panel.

7.1 The Project Tree

The main window contains a project tree in the left-most panel. It shows the entire structure of the project,
and has four columns:

Column 1 The first column shows the icon and label of each folder, document, or note in your project.
The label is not the same as the title you set inside the document. However, the document’s label
will appear in the header above the document text itself so you know where in the project an open
document belongs.

Column 2 The second column shows the word count of the document, or the sum of words of the child
items for folders. If the counts seem incorrect, they can be updated by rebuilding the project index
from the Tools menu, or by pressing F9.

Column 3 The third column indicates whether the document is included in the final project build or not.
You may want to filter out documents that you no longer want to keep in the final manuscript, but
want to keep in the project tree for reference.

Column 4 The fourth column shows the user-defined status or importance labels you’ve assigned to each
project item. See Document Importance and Status for more details.

Right-clicking an item in the project tree will open a context menu under the cursor, displaying a selection
of actions that can be performed on the selected item.

The label, status or importance setting, the layout, and the include flag can all be edited using the Item
Settings dialog box. The dialog can be opened from the Project menu, or by pressing F2 with the item
selected.

Below the project tree you will find a small details panel showing the full information of the currently
selected item. This panel also includes the latest paragraph and character counts in addition to the word
count.

23

novelWriter Documentation, Release 1.6.6

7.1.1 The Novel Tree

An alternative way to view the project structure is the novel tree. You can switch to this view by selecting
the Novel tab under the project tree. This view is a simplified version of the view in the Outline. It is
convenient when you want to browse the structure of the story itself rather than the document files.

Note: You cannot reorganise the entries in the novel tree, or add any new ones, as that would imply
restructuring the content of the document files. Any editing must be done in the project tree.

7.1.2 Document Importance and Status

Each document or folder in your project can have either a “Status” or “Importance” flag set. These are
flags that you control and define yourself. To modify the labels, go to their respective tabs in Project
Settings.

The “Status” flag is intended to tag a Novel document as for instance a draft or as completed, and the
“Importance” flag is intended to tag character notes, or other notes, as for instance a main, major or minor
character.

Whether a document uses a “Status” or “Importance” flag depends on which root folder it lives in. If it’s
in the Novel folder, it uses the “Status” flag, otherwise it uses an “Importance” flag. Some folders, like
Trash and Archive allow both.

7.1.3 Project Tree Drag & Drop

The project tree allows drag & drop to a certain extent. This feature is primarily intended for reordering
your documents within each root folder. Moving a document in the project tree will also put it in a
different place when you build the novel project.

Drag & drop has only limited support for moving documents. In general, bulk actions are not allowed.
This is deliberate to avoid accidentally messing up your project. If you make a mistake, the last move
action can be undone by pressing CtrlShiftZ.

Documents and their folders can be rearranged freely within their root folders. Novel documents cannot
be moved out of the Novel folder, except to Trash and the Archive folders. Notes can be moved freely
between all root folders, but keep in mind that if you move a note into a Novel, its “Importance” setting
will be reset to the default “Status” setting. See Document Importance and Status.

Folders cannot be moved at all outside their root tree. Neither can a folder containing documents be
deleted. You must first delete the containing documents.

Root folders in the project tree cannot be dragged & dropped at all. If you want to reorder them, you can
move them up or down with respect to eachother from the Project menu, the right-click context menu,
or by pressing CtrlShift and the Up or Down key.

24 Chapter 7. The User Interface

novelWriter Documentation, Release 1.6.6

7.2 Editing and Viewing Documents

To edit a document, double-click it in the project tree, or press the Return key while having it selected.
This will open the document in the document editor. The editor uses a markdown-like syntax for some
features, and a novelWriter-specific syntax for others. The syntax format is described in the Formatting
Your Text section. The editor has a maximise button (toggles the Focus Mode) and a close button in the
top–right corner. On the top–left side you will find an edit button that opens the Item Settings dialog for
the currently open document, and a search button to open the search dialog.

Any document in the project tree can also be viewed in parallel in a right hand side document viewer.
To view a document, press CtrlR, or select View Document in the menu. If you have a middle mouse
button, middle-clicking on the document will also open it in the viewer. The document viewed does not
have to be the same document as currently being edited. However, If you are viewing the same document,
pressing CtrlR again will update the document with your latest changes. You can also press the reload
button in the top–right corner of the view panel, next to the close button, to achieve the same thing.

Both the document editor and viewer will show the label of the document in the header at the top of the
edit or view panel. Optionally, the full project path to the document can be shown. This can be set in
Preferences.

Tip: Clicking on the document title bar will select the document in the project tree and reveal its location,
making it easier to locate in a large project.

Any tag reference in the editor can be opened in the viewer by moving the cursor to the label and pressing
CtrlReturn. You can also control-click them with your mouse. In the viewer, the references become
clickable links. Clicking them will replace the content of the viewer with the content of the document
the reference points to.

The document viewer keeps a history of viewed documents, which you can navigate through with the
arrow buttons in the top–left corner of the viewer. If your mouse has back and forward navigation buttons,
these can be used as well. They work just like the backward and forward features in a browser.

At the bottom of the view panel there is a References panel. (If it is hidden, click the icon to reveal it.)
This panel will show links to all documents referring back to the one you’re currently viewing, if any has
been defined. The Sticky button will freeze the content of the panel to the current document, even if you
navigate to another document. This is convenient if you want to quickly look through all documents in
the list in the References panel without losing the list in the process.

Note: The References panel relies on an up-to-date index of the project. The index is maintained
automatically. However, if anything is missing, or seems wrong, the index can always be rebuilt by
selecting Rebuild Index from the Tools menu, or by pressing F9.

7.2. Editing and Viewing Documents 25

novelWriter Documentation, Release 1.6.6

7.2.1 Search & Replace

The document editor has a search and replace tool that can be activated with CtrlF for search mode or
CtrlH for search and replace mode.

Pressing Return while in the search box will search for the next occurrence of the word, and
ShiftReturn for the previous. Pressing Return in the replace box, will replace the highlighted text
and move to the next result.

There are a number of settings for the search tool available as toggle switches above the search box.
They allow you to search for, in order: matched case only, whole word results only, search using regular
expressions, loop search when reaching the end of the document, and move to the next document when
reaching the end. There is also a switch that will try to match the case of the word when the replacement
is made. That is, it will try to keep the word upper, lower, or capitalised to match the word being replaced.

The regular expression search is somewhat dependant on which version of Qt your system has. If you
have Qt 5.13 or higher, there is better support for unicode symbols in the search.

7.3 Auto-Replace as You Type

A few auto-replace features are supported by the editor. You can control every aspect of the auto-replace
feature from Preferences. You can also disable this feature entirely if you wish.

Tip: If you don’t like auto-replacement, all symbols inserted by this feature are also available in the
Insert menu, and via convenient Insert Shortcuts. You may also be using a Compose Key setup, which
means you may not need the auto-replace feature.

The editor is able to replace two and three hyphens with short and long dashes, triple points with el-
lipsis, and replace straight single and double quotes with user-defined quote symbols. It will also try
to determine whether to use the opening or closing symbol, although this feature isn’t always accurate.
Especially distinguishing between closing single quote and apostrophe can be tricky for languages that
use the same symbol for these, like English does.

Tip: If the auto-replace feature changes a symbol when you did not want it to change, pressing CtrlZ
immediately after the auto-replacement will undo it without undoing the character you typed.

7.4 Project Outline View

The project’s Outline view is available as the second tab on the right hand side of the main window
labelled Outline. The outline provides an overview of the novel structure, displaying a tree hierarchy of
the elements of the novel, that is, the level 1 to 4 headings representing partitions, chapters, scenes and
sections.

The document containing the heading can also be displayed as a separate column, as well as the line
number where it occurs. Double-clicking an entry will open the corresponding document in the editor.

Note: Since the internal structure of the novel does not depend directly on the folder and document
structure of the project tree, these will not necessarily look the same, depending on how you choose to

26 Chapter 7. The User Interface

https://en.wikipedia.org/wiki/Compose_key

novelWriter Documentation, Release 1.6.6

organise your documents. See the Novel Structure page for more details.

Various meta data and information extracted from tags can be displayed in columns in the outline. A
default set of such columns is visible, but you can turn on or off more columns by right clicking the
header and selecting the columns you want to show. The order of the columns can also be rearranged by
dragging them to a different position.

Note: The Title column cannot be disabled or moved.

The information viewed in the outline is based on the project’s main index. While novelWriter does its
best to keep the index up to date when contents change, you can always rebuild it manually by pressing
F9 if something isn’t right.

The outline view itself can be regenerated by pressing F10. You can also enable automatic updating in
the Tools menu, which will trigger an update whenever the index is updated and the Outline tab is active.
You may want to disable this feature if your project is very large,

The Synopsis column of the outline view takes its information from a specially formatted comment. See
Comments and Synopsis.

7.4. Project Outline View 27

novelWriter Documentation, Release 1.6.6

28 Chapter 7. The User Interface

CHAPTER

EIGHT

FORMATTING YOUR TEXT

The novelWriter text editor is a plain text editor that uses formatting codes for setting meta data values
and allowing for some text formatting. The syntax is based on Markdown, but novelWriter is not strictly
a Markdown editor. It supports basic formatting like emphasis (italic), strong importance (bold) and
strikethrough text, as well as four levels of headings.

In addition to formatting codes, novelWriter allows for comments, a synopsis tag, and a set of keyword
and value sets used for tags and references. There are also some codes that apply two whole paragraphs.
See Text Paragraphs below for more details.

8.1 Syntax Highlighting

The editor has a syntax highlighter feature that is meant to help you know when you’ve used the formtat-
ting tags or other features correctly. It will change the colour and font size of your headings, change the
text colour of emphasised text, and it can also show you where you have dialogue in your text.

When you use the commands to set tags and references, these also change colour. Correct commands have
a dedicated colour, and the references themselves will get a colour if they are valid. Invalid references
will get a squiggly error line underneath.

There are a number of syntax highlighter colour themes available, both for light and dark GUIs. You can
select them for Preferences.

8.2 Headings

Four levels of headings are allowed. For project notes they are free to be used as you see fit. That
is, novelWriter doesn’t assign the different headings any meaning. However, for novel documents they
indicate the structural level of the novel and must be used correctly to produce the intended result. See
Importance of Headings for more details.

Title Text Heading level one. For novel documents, the header level indicates the start of a new
partition.

Title Text Heading level two. For novel documents, the header level indicates the start of a new
chapter. Chapter numbers can be inserted automatically when exporting the manuscript.

Title Text Heading level three. For novel documents, the header level indicates the start of a
new scene. Scene numbers or scene separators can be inserted automatically when exporting the
manuscript, so you can use the title field as a working title for your scenes if you wish.

29

novelWriter Documentation, Release 1.6.6

Title Text Heading level four. For novel documents, the header level indicates the start of a
new section. Section titles can be replaced by separators or removed completely when exporting
the manuscript.

For headers level one and two, adding a ! modifies the behaviour of the heading:

#! Title Text This tells the build tool that the level one heading is intended to be used for the novel’s
main title, like for instance on the front page. When exporting, this will use a different styling and
will exclude the title from for instance a Table of Contents in Libre Office.

##! Title Text This tells the build tool to not assign a chapter number to this chapter title if automatic
chapter numbers are being used. Such titles are useful for a prologue for instance. See Unnumbered
Chapter Headings for more details.

Note: The space after the # or ! character is mandatory. The syntax highlighter will change colour and
font size when the heading is correctly formatted.

8.3 Text Paragraphs

A text paragraph is indicated by a blank line. That is, you need two line breaks to separate two fragments
of text into two paragraphs. Single line breaks are treated as line breaks within a paragraph.

In addition, the editor supports a few additional types of whitespaces:

• A non-breaking space can be inserted with CtrlK, Space.

• Thin spaces are also supported, and can be inserted with CtrlK, ShiftSpace.

• Non-breaking thin space can be inserted with CtrlK, CtrlSpace.

These are all insert features, and the Insert menu has more. They are also listed in Insert Shortcuts.

Non-breaking spaces are highlighted by the syntax highlighter with an alternate coloured background,
depending on the selected theme.

Tip: Non-breaking spaces are for instance the correct type of space to separate a number from its unit.
Generally, non-breaking spaces are used to prevent line wrapping algorithms from adding line breaks
where they shouldn’t.

8.4 Text Emphasis

A minimal set of text emphasis styles are supported.

text The text is rendered as emphasised text (italicised).

text The text is rendered as strongly important text (bold).

~~text~~ Strikethrough text.

In markdown guides it is often recommended to differentiate between strong importance and emphasis
by using ** for strong and _ for emphasis, although markdown generally also supports __ for strong and

30 Chapter 8. Formatting Your Text

novelWriter Documentation, Release 1.6.6

* for emphasis. However, since the differentiation makes the highlighting and conversion significantly
simpler and faster, in novelWriter this is a rule, not just a recommendation.

In addition, the following rules apply:

1. The emphasis and strikethrough formatting tags do not allow spaces between the words and the
tag itself. That is, **text** is valid, **text ** is not.

2. More generally, the delimiters must be on the outer edge of words. That is, some **text in
bold** here is valid, some** text in bold** here is not.

3. If using both ** and _ to wrap the same text, the underscore must be the inner wrapper. This is
due to the underscore also being a valid word character, so if they are on the outside, they violate
rule 2.

4. Text emphasis does not span past line breaks. If you need to add emphasis to multiple lines or
paragraphs, you must apply it to each of them in turn.

8.5 Comments and Synopsis

In addition to these standard markdown features, novelWriter also allows for comments in documents.
The text of a comment is ignored by the word counter. The text can also be filtered out when exporting
or viewing the document.

If the first word of a comment is Synopsis: (with the colon included), the comment is treated specially
and will show up in the Project Outline View in a dedicated column. The word synopsis is not case
sensitive. If it is correctly formatted, the syntax highlighter will indicate this by altering the colour of the
word.

% text... This is a comment. The text is not exported by default (this can be overridden), seen in the
document viewer, or counted towards word counts.

% Synopsis: text... This is a synopsis comment. It is generally treated in the same way as a
regular comment, except that it is also captured by the indexing algorithm and displayed in the
Project Outline View. It can also be filtered separately when exporting the project to for instance
generate an outline document of the whole project.

Note: Only one comment can be flagged as a synopsis comment for each heading. If multiple comments
are flagged as synopsis comments, the last one will be used and the rest ignored.

8.6 Tags and References

The document editor supports a minimal set of keywords used for setting tags, and making references
between documents. The tags and references can be set once per section defined by a heading. Using
them multiple times under the same heading will just override the previous setting.

@keyword: value A keyword argument followed by a value, or a comma separated list of values.

The available tag and reference keywords are listed in the Tag References section. They can also be
inserted at the cursor position in the editor via the Insert menu.

8.5. Comments and Synopsis 31

novelWriter Documentation, Release 1.6.6

8.7 Paragraph Alignment and Indentation

All documents have the text by default aligned to the left or justified, depending on your Preferences.

You can override the default text alignment on individual paragraphs by specifying alignment tags. These
tags are double angle brackets. Either >> or <<. You put them either before or after the paragraph, and
they will “push” the text towards the edge the brackets point towards. This should be fairly intuitive.

Indentation uses a similar syntax. But here you use a single > or < to push the text away from the edge.

Examples:

Table 1: Text Alignment and Indentation
Syntax Description
>> Right aligned text The text paragraph is right-aligned.
Left aligned text << The text paragraph is left-aligned.
>> Centred text << The text paragraph is centred.
> Indented text The text has an increased left margin.
Indented text < The text has an increased right margin.
> Indented text < The text has an both margins increased.

Note: The text editor will not show the alignment and indentation live. But the viewer will show them
when you open the document there. It will of course also be reflected in the document generated from
the build tool as long as the format supports paragraph alignment.

8.8 Vertical Space and Page Breaks

Adding more than one line break between paragraphs will not increase the space between those para-
graphs when exporting the project. To add additional space between paragraphs, add the text [VSPACE]
on a line of its own, and the build tool will insert a blank paragraph in its place.

If you need multiple blank paragraphs just add a colon and a number to the above code. For instance,
writing [VSPACE:3] will insert three blank paragraphs.

Normally, the build tool will insert a page break before all headers of level one and for all headers of level
two for novel documents, i.e. chapters, but not for project notes.

If you need to add a page break somewhere else, put the text [NEW PAGE] on a line by itself before the
text you wish to start on a new page.

Page breaks are automatically added to partition, chapter and unnumbered chapter headers of novel doc-
uments. If you want such breaks for scenes and sections, you must add them manually.

Note: The page break code is applied to the text that follows. It adds a “page break before” mark to the
text when exporting to HTML or Open Document. This means that a [NEW PAGE] which has no text
following it will not result in a page break.

32 Chapter 8. Formatting Your Text

CHAPTER

NINE

KEYBOARD SHORTCUTS

Most features in novelWriter are available as keyboard shortcuts.

9.1 Main Shortcuts

The main shorcuts are as follows:

Table 1: Keyboard Shortcuts
Shortcut Description
Alt1 Switch focus to the project tree. On Windows, use CtrlAlt1.
Alt2 Switch focus to document editor. On Windows, use CtrlAlt2.
Alt3 Switch focus to document viewer. On Windows, use CtrlAlt3.
Alt4 Switch focus to outline view. On Windows, use CtrlAlt4.
AltLeft Move backward in the view history of the document viewer.
AltRight Move forward in the view history of the document viewer.
Ctrl. Open menu to correct word under cursor.
Ctrl, Open the Preferences dialog.
Ctrl/ Toggle block format as comment.
Ctrl0 Remove block formatting for block under cursor.
Ctrl1 Change block format to header level 1.
Ctrl2 Change block format to header level 2.
Ctrl3 Change block format to header level 3.
Ctrl4 Change block format to header level 4.
Ctrl5 Change block alignment to left-aligned.
Ctrl6 Change block alignment to centred.
Ctrl7 Change block alignment to right-aligned.
Ctrl8 Add a left margin to the block.
Ctrl9 Add a right margin to the block.
CtrlA Select all text in the document.
CtrlB Format selected text, or word under cursor, with strong emphasis (bold).
CtrlC Copy selected text to clipboard.
CtrlD Strikethrough selected text, or word under cursor.
CtrlE If in the project tree, edit a document or folder settings.
CtrlF Open the search bar and search for the selected word, if any is selected.
CtrlG Find next occurrence of search word in current document.
CtrlH Open the search and replace bar and search for the selected word, if any is se-

lected. (On Mac, this is Cmd=.)
continues on next page

33

novelWriter Documentation, Release 1.6.6

Table 1 – continued from previous page
Shortcut Description
CtrlI Format selected text, or word under cursor, with emphasis (italic).
CtrlK Activate the insert commands. The commands are listed in Insert Shortcuts.
CtrlN Create new document.
CtrlO Open selected document.
CtrlQ Exit novelWriter.
CtrlR If in the project tree, open a document for viewing. If the editor has focus, open

current document for viewing.
CtrlS Save the current document in the document editor.
CtrlV Paste text from clipboard to cursor position.
CtrlW Close the current document in the document editor.
CtrlX Cut selected text to clipboard.
CtrlY Redo latest undo.
CtrlZ Undo latest changes.
CtrlF7 Toggle spell checking.
CtrlF10 Toggle automatic updating of project outline.
CtrlUp Move item one step up in the project tree.
CtrlDown Move item one step down in the project tree.
CtrlDel Delete next word in editor.
CtrlBackspace Delete previous word in editor.
Ctrl' Wrap selected text, or word under cursor, in single quotes.
Ctrl" Wrap selected text, or word under cursor, in double quotes.
CtrlRetrun Open the tag or reference under the cursor in the Viewer.
CtrlShift, Open the Project Settings dialog.
CtrlShift/ Remove block formatting for block under cursor.
CtrlShift1 Replace occurrence of search word in current document, and search for next oc-

currence.
CtrlShiftA Select all text in current paragraph.
CtrlShiftG Find previous occurrence of search word in current document.
CtrlShiftI Import text to the current document from a text file.
CtrlShiftN Create new folder.
CtrlShiftO Open a project.
CtrlShiftR Close the document viewer.
CtrlShiftS Save the current project.
CtrlShiftW Close the current project.
CtrlShiftZ Undo move of project tree item.
CtrlShiftDel If in the project tree, move a document to trash, or delete a folder.
F1 Open the online user manual.
F2 If in the project tree, edit a document or folder settings.
F3 Find next occurrence of search word in current document.
F5 Open the Build Novel Project dialog.
F6 Open the Writing Statistics dialog.
F7 Re-run spell checker.
F8 Activate Focus Mode, hiding the project tree and document viewer.
F9 Re-build the project index.
F10 Re-build the project outline.
F11 Activate full screen mode.
ShiftF1 Open the local user manual (PDF) if it is available.

continues on next page

34 Chapter 9. Keyboard Shortcuts

novelWriter Documentation, Release 1.6.6

Table 1 – continued from previous page
Shortcut Description
ShiftF3 Find previous occurrence of search word in current document.
ShiftF6 Open the Project Details dialog.
Return If in the project tree, open a document for editing.

Note: On macOS, replace Ctrl with Cmd.

9.2 Insert Shortcuts

A set of insert features are also available through shortcuts, but they require a double combination of
key sequences. The insert feature is activated with CtrlK, followed by a key or key combination for the
inserted content.

Table 2: Keyboard Shortcuts
Shortcut Description
CtrlK, – Insert a short dash (en dash).
CtrlK, _ Insert a long dash (em dash).
CtrlK, Ctrl_ Insert a horizontal bar (quotation dash).
CtrlK, ~ Insert a figure dash (same width as a number).
CtrlK, 1 Insert a left single quote.
CtrlK, 2 Insert a right single quote.
CtrlK, 3 Insert a left double quote.
CtrlK, 4 Insert a right double quote.
CtrlK, ' Insert a modifier apostrophe.
CtrlK, . Insert an ellipsis.
CtrlK, Ctrl' Insert a prime.
CtrlK, Ctrl" Insert a double prime.
CtrlK, Space Insert a non-breaking space.
CtrlK, ShiftSpace Insert a thin space.
CtrlK, CtrlSpace Insert a thin non-breaking space.
CtrlK, * Insert a list bullet.
CtrlK, Ctrl– Insert a hyphen bullet (alternative bullet).
CtrlK, Ctrl* Insert a flower mark (alternative bullet).
CtrlK, % Insert a per mille symbol.
CtrlK, CtrlO Insert a degree symbol.
CtrlK, CtrlX Insert a times sign.
CtrlK, CtrlD Insert a division sign.
CtrlK, G Insert a @tag keyword.
CtrlK, V Insert a @pov keyword.
CtrlK, F Insert a @focus keyword.
CtrlK, C Insert a @char keyword.
CtrlK, P Insert a @plot keyword.
CtrlK, T Insert a @time keyword.
CtrlK, L Insert a @location keyword.

continues on next page

9.2. Insert Shortcuts 35

novelWriter Documentation, Release 1.6.6

Table 2 – continued from previous page
Shortcut Description
CtrlK, O Insert an @object keyword.
CtrlK, E Insert an @entity keyword.
CtrlK, X Insert a @custom keyword.

36 Chapter 9. Keyboard Shortcuts

CHAPTER

TEN

TYPOGRAPHICAL NOTES

novelWriter has some support for typographical symbols that are not usually easily available in many text
editors. This includes for instance the proper unicode quotation marks, dashes, ellipsis, thin spaces, etc.
All these symbols are available from the Insert menu, and via keyboard shortcuts. See Insert Shortcuts.

This chapter provides some additional information on how novelWriter handles these symbols.

10.1 Special Notes on Symbols

Some additional notes on the available symbols.

10.1.1 Dashes and Ellipsis

With the auto-replace feature enabled (see Auto-Replace as You Type), multiple hyphens are converted
automatically to short and long dashes, and three dots to ellipsis. The last auto-replace can always be
reverted with the undo command CtrlZ, reverting the text to what you typed before the automatic re-
placement occurred.

In addition, “Figure Dash” is available. The Figure Dash is a dash that has the same width as the numbers
of the same font, for most fonts. It helps to align numbers nicely in columns when you need to use a dash
in them.

10.1.2 Single and Double Quotes

All the different quotation marks listed on the Quotation Mark Wikipedia page are available, and can be
selected as auto-replaced symbols for straight single and double quote key strokes. The settings can be
found in Preferences.

Ordinarily, text wrapped in quotes are highlighted by the editor. This is meant as a convenience for
highlighting dialogue between characters. This feature can be disabled in Preferences if this feature isn’t
wanted.

The editor distinguishes between text wrapped in regular straight double quotes and the user-selected
double quote symbols. This is to help the writer recognise which parts of the text are not using the
chosen quote symbols. Two convenience functions in the Format menu can be used to re-format a selected
section of text with the correct quote symbols.

37

https://en.wikipedia.org/wiki/Quotation_mark

novelWriter Documentation, Release 1.6.6

10.1.3 Single and Double Prime

Both single and double prime symbols are available in the Insert menu. These symbols are the correct
symbols to use for unit symbols for feet, inches, minutes and seconds. The usage of these is described in
more detail on the Wikipedia Prime page. They look very similar to single and double straight quotes,
and may be renderred similarly by the font, but they have different codes. Using these correctly will also
prevent the auto-replace and dialogue highlighting features misunderstanding their meaning in the text.

10.1.4 Modifier Letter Apostrophe

The auto-replace feature will consider any right-facing single straight quote as a quote symbol, even if
it is intended as an apostrophe. This also includes the syntax highlighter, which may assume the first
following apostrophe is the closing symbol of a single quoted region of text.

To get around this, an alternative apostrophe is available. It is a special Unicode character that is not
categorised as punctuation, but as a modifier. It is usually renderred the same way as the right single
quotation marks, depending on the font. There is a Wikipedia article for the Modifier letter apostrophe
with more details.

Note: On export with the Build Novel Project tool, these apostrophes will be replaced automatically
with the corresponding right hand single quote symbol as is generally recommended. Therefore it doesn’t
really matter if you only use them to correct highlighting.

10.1.5 Special Space Symbols

A few variations of the regular space character is supported. The correct typographical way to separate
a number from its unit is with a thin space. It is usually 2/3 the width of a regular space. For numbers
and units, this should in addition be a non-breaking space, that is, the text wrapping should not add a line
break on this particular space.

A regular space can also be made into a non-breaking space if needed.

All non-breaking spaces are highlighted with a differently coloured background to make it easier to spot
them in the text. The colour will depend on the selected colour theme.

The thin and non-breaking spaces are converted to their corresponding HTML codes on export to HTML
format.

38 Chapter 10. Typographical Notes

https://en.wikipedia.org/wiki/Prime_(symbol)
https://en.wikipedia.org/wiki/Modifier_letter_apostrophe
https://en.wikipedia.org/wiki/Thin_space

CHAPTER

ELEVEN

PROJECT FORMAT CHANGES

Most of the changes to the file formats over the history of novelWriter have no impact on the user-side
of things. The project files are generally updated automatically. However, some of the changes require
minor actions from the user.

The key changes in the formats are listed below, as well as the user actions required where applicable.

11.1 Format 1.3 Changes

This project format vas introduces in novelWriter version 1.5.

With this format, the number of document layouts was reduced from 8 to 2. The conversion of document
layouts is performed automatically when the project is opened.

Due to the reduction of layouts, some features that were previously controlled by these layouts will be
lost. These features are instead now controlled by syntax codes, so to recover these features, some minor
modification must be made to select documents by the user.

The manual changes the user must make should be very few as they apply to document layouts that should
be used only a few places in any given project. These are as follows:

Title Pages

• The formatting of the level one title on the title page must be changed from # Title Text to #!
Title Text in order to retain the previous functionality. See Headings.

• Any text that was previously centred on the page must be manually centred using the new text
alignment feature. See Paragraph Alignment and Indentation.

Unnumbered Chapters

• Since the specific layout for unnumbered chapters has been dropped, such chapters must all use the
##! Chapter Name formatting code instead of ## Chapter Name. This also includes chapters
marked by an asterisk: ## *Chapter Name, as this feature has also been dropped. See Headings.

Plain Pages

• The layout named “Plain Page” has also been removed. The only feature of this layout was that it
ensured that the content always started on a fresh page. In the new format, fresh pages can be set
anywhere in the text with the [NEW PAGE] code. See Vertical Space and Page Breaks.

39

novelWriter Documentation, Release 1.6.6

11.2 Format 1.2 Changes

This project format was introduces in novelWriter version 0.10.

With this format, the way auto-replace entries were stored in the main project XML file changed. Opening
an old project automatically converts the storage format up to and including version 1.1.1.

Format 1.2 projects can be opened without loss of information up until version 1.1.1, and if the auto-
replace is not being used, can still be opened in novelWriter as of version 1.6.6.

11.3 Format 1.1 Changes

This project format was introduces in novelWriter version 0.7.

With this format, the content folder was introduced in the project storage. Previously, all novelWriter
documents were saved in a series of folders numbered from data_0 to data_f.

It also reduces the number of meta data and cache files. These files are automatically deleted if an old
project is opened. This was also when the Table of Contents file was introduced.

Format 1.1 projects can be opened without loss of information up until version 1.1.1, and if the auto-
replace is not being used, can still be opened in novelWriter as of version 1.6.6.

11.4 Format 1.0 Changes

This is the original file format and project structure. It was in use up to version 0.6.3.

Format 1.0 projects can be opened without loss of information up until version 1.1.1, and if the auto-
replace is not being used, can still be opened in novelWriter as of version 1.6.6.

40 Chapter 11. Project Format Changes

CHAPTER

TWELVE

NOVEL PROJECTS

New projects can be created from the Project menu by selecting New Project. This will open the New
Project Wizard that will assist you in creating a barebone project suited to your needs. A novelWriter
project requires a dedicated folder for storing its files on the local file system. See How Data is Stored
for further details on how files are organised.

A list of recently opened projects is maintained, and displayed in the Open Project dialog. A project can
be removed from this list by selecting it and pressing the Del key or by clicking the Remove button.

Project-specific settings are available in Project Settings in the Project menu. See further details below
in the Project Settings section. Details about the project, including word counts, and a table of contents
with word and page counts, is available through the Project Details dialog.

12.1 Project Roots

Projects are structured into a set of top level folders called “Root Folders”. They are visible in the project
tree at the left side of the main window.

The novel documents go into a root folder of type Novel. Project notes go into the other root folders.
These other root folder types are intended for your notes on the various elements of your story. Using
them is of course entirely optional.

A new project may not have all of the root folders present, but you can add the ones you want from Create
Root Folder in the Project menu.

Each root folder has one or more reference keyword associated with it that can be used to reference
content in your notes from other documents and notes. The intended usage of each type of root folder is
listed below. However, aside from the Novel folder, no restrictions are applied by the application. You
can use them however you want.

Novel This is the root folder of all text that goes into the final novel. This class of documents have other
rules and features than other documents in the project. See Novel Structure for more details.

Plot This is the root folder where main plots can be outlined. It is optional, but adding at least brief
notes can be useful in order to tag plot elements for the Outline view. Tags in this folder can be
references using the @plot keyword.

Characters Character notes go in this root folder. These are especially important if one wants to use
the Outline view to see which character appears where, and which part of the story is told from
a specific character’s point-of-view or focusing on a particular character’s storyline. Tags in this
folder can be referenced using the @pov keyword for point-of-view characters, @focus for a focus
character, or the @char keyword for any other characters.

41

novelWriter Documentation, Release 1.6.6

Locations The locations folder is for various scene locations that you want to track. Tags in this folder
can be references using the @location keyword.

Timeline If the story has multiple plot timelines or jumps in time within the same plot, this class of notes
can be used to track this. Tags in this folder can be references using the @time keyword.

Objects Important objects in the story, for instance important objects that change hands often, can be
tracked here. Tags in this folder can be references using the @object keyword.

Entities Does your plot have many powerful organisations or companies? Or other entities that are part
of the plot? They can be organised here. Tags in this folder can be references using the @entity
keyword.

Custom The custom root folder can be used for tracking anything else not covered by the above options.
Tags in this folder can be references using the @custom keyword.

The root folders correspond to the categories of tags that can be used to reference them. For more
information about the tags listed, see Tag References.

Tip: You can rename root folders to whatever you want. However, this doesn’t change the reference
keyword.

12.1.1 Deleted Documents

Deleted documents will be moved into a special Trash root folder. Documents in the trash folder can then
be deleted permanently, either individually, or by emptying the trash from the menu. Documents in the
trash folder are removed from the project index and cannot be referenced.

Folders and root folders can only be deleted when they are empty. Recursive deletion is not supported.
A document or a folder can be deleted from the Project menu, or by pressing CtrlShiftDel.

12.1.2 Archived Documents

If you don’t want to delete a document, or put it in the Trash folder where it may be deleted, but still want
it out of your main project tree, you can create an Archive root folder from the Project menu. You are not
allowed to move entire folders to this root folder, only documents. If you need folders in it to organise
your documents, you can of course create new ones there.

You can drag any document to this folder and preserve its settings. The document will always be excluded
from the Build Novel Project builds. It is also removed from the project index, so the tags and references
defined in it will not show up anywhere else.

42 Chapter 12. Novel Projects

novelWriter Documentation, Release 1.6.6

12.1.3 Recovered Documents

If novelWriter crashes or otherwise exits without saving the project state, or if you’re using a file syn-
chronisation tool that runs out of sync, there may be files in the project folder that aren’t tracked in the
core project file. These files, when discovered, are recovered and added back into the project if possible.

The discovered files are scanned for meta information that give clues as to where the document may
previously have been located in the project. The project loading routines will try to put them back as
close as possible to this location, if it still exists. Generally, it will be appended to the end of the folder
where it previously was located. If that folder doesn’t exist, it will try to add it to the correct root folder.
If it cannot figure out which root folder is correct, the document will be added to the Novel root folder.
Only if the Novel folder is missing will it give up.

If the title of the document can be recovered, the word “Recovered:” will be added as a prefix. If the title
cannot be determined, the document will be named “Recovered File N” where N is a sequential number.

12.1.4 Project Lockfile

To prevent lost documents caused by file conflicts when novelWriter projects are synced with file syn-
chronisation tools, a project lockfile is written to the project folder. If you try to open a project which has
such a file present, you will be presented with a warning, and some information about where else novel-
Writer thinks the project is also open. You will be give the option to ignore this warning, and continue
opening the project at your own risk.

Note: If, for some reason, novelWriter crashes, the lock file may remain even if there are no other
instances keeping the project open. In such a case it is safe to ignore the lock file warning when re-
opening the project.

Warning: If you choose to ignore the warning and continue opening the project, and multiple
instances of the project are in fact open, you are likely to cause inconsistencies and create diverging
project files, potentially resulting in loss of data and orphaned files. You are not likely to lose any
actual text unless both instances have the same document open in the editor, and novelWriter will try
to resolve inconsistencies the next time you open the project.

12.1.5 Using Folders in the Project Tree

Folders, aside from root folders, have no structural significance to the project. When novelWriter is
processing the documents in the novel, like for instance during export, these folders are ignored. Only
the order of the documents themselves matter.

The folders are there purely as a way for the user to organise the documents in meaningful sections and
to be able to collapse and hide them in the project tree when you’re not working on those documents.

Tip: You can use folders to sort your scene documents into chapters. You will still need to add a chapter
document as the first item of your chapter folder, and the scene documents as the following items. Other
ways to use folders is to make a folder for each act or part.

12.1. Project Roots 43

novelWriter Documentation, Release 1.6.6

12.2 Project Documents

New documents can be created from the Document menu, or by pressing CtrlN while in the project tree.
This will create a new, empty document, and open the Item Settings dialog where the document label and
various other settings can be changed. This dialog can also be opened again later from either the Project
menu, selecting Edit Project Item, or by pressing F2 with the item selected.

The layout of the document is also defined here. The two options available are Novel Document and
Project Note. These behave differently when the project is built. A project note is never treated as part
of the novel, no matter where in the project it is located. See Document Layout for more details.

You can also select whether the document is by default included when building the project. This setting
can be overridden in the Build Novel Project tool if you wish to include them anyway. This is covered
in the File Selection section. You can also toggle the included state of a document from the right-click
context menu.

12.2.1 Word Counts

A character, word and paragraph count is maintained for each document, as well as for each section of a
document following a header. The word count, and change of words in the current session, is displayed
in the footer of any document open in the editor, and all stats are shown in the details panel below the
project tree for any document selected in the project or novel tree.

The word counts are not updated in real time, but run in the background every few seconds for as long as
the document is being actively edited.

A total project word count is displayed in the status bar. The total count depends on the sum of the
values in the project tree, which again depend on an up to date index. If the counts seem wrong, a full
project word recount can be initiated by rebuilding the project’s index. Either form the Tools menu, or
by pressing F9.

12.3 Project Settings

The Project Settings can be accessed from the Project menu, or by pressing CtrlShift,. This will open
a dialog box, with a set of tabs.

12.3.1 Settings Tab

The Settings tab holds the project title and author settings.

The Working Title can be set to a different title than the Book Title. The difference between them is simply
that the Working Title is used for the GUI (main window title) and for generating the backup files. The
intention is that the Working Title should remain unchanged throughout the project, otherwise the name
of exported files and backup files may change too.

The Book Title and Book Authors settings are currently not used for anything, so setting them is just for
the benefit of the author. Future features may use them, and they are exported on some export formats in
the Build Novel Project tool.

If your project is in a different language than your main spell checking is set to, you can override the
default spell checking language here. You can also override the automatic backup setting.

44 Chapter 12. Novel Projects

novelWriter Documentation, Release 1.6.6

12.3.2 Status and Importance Tabs

Each document or folder of type Novel can be given a status level, signified by a coloured icon, and each
document or folder of the remaining types can be given an importance level. These are colour coded
icons and labels that can be applied to each document or folder.

These are purely there for the user’s convenience, and you are not required to use them for any other
features to work. No other part of novelWriter accesses this information. The intention is to use these to
indicate at what stage of completion each novel document is, or how important the content of a note is to
the plot. You don’t have to use them this way, that’s just what they were intended for, but you can make
them whatever you want.

See also Document Importance and Status.

Note: The status or importance level currently in use by one or more documents cannot be deleted, but
they can be edited.

12.3.3 Auto-Replace Tab

A set of automatically replaced keywords can be added in this tab. The keywords in the left column will
be replaced by the text in the right column when documents are opened in the viewer. They will also be
applied to exports.

The auto-replace feature will replace text in angle brackets that are in this list. The syntax highlighter
will add an alternate colour to text marching the syntax, but it doesn’t check if the text is in this list.

Note: A keyword cannot contain spaces. The angle brackets are added by default, and when used in the
text are a part of the keyword to be replaced. This is to ensure that parts of the text aren’t unintentionally
replaced by the content of the list.

12.4 Backup

An automatic backup system is built into novelWriter. In order to use it, a backup path to where the
backup files are to be stored must be provided in Preferences.

Backups can be run automatically when a project is closed, which also implies it is run when the appli-
cation itself is closed. Backups are date stamped zip files of the entire project folder, and are stored in a
subfolder of the backup path. The subfolder will have the same name as the project Working Title set in
Project Settings.

The backup feature, when configured, can also be run manually from the Tools menu. It is also possible
to disable automated backups for a given project in Project Settings.

Note: For the backup to be able to run, the Working Title must be set in Project Settings. This value is
used to generate the folder name for the zip files. Without it, the backup will not run at all, but it will
produce a warning message.

12.4. Backup 45

novelWriter Documentation, Release 1.6.6

12.5 Writing Statistics

When you work on a project, a log file records when you opened it, when you closed it, and the total
word counts of your novel documents and notes at the end of the session. You can view this file in the
meta folder in the directory where you saved your project. The file is named sessionStats.log.

A tool to view the content of this file is available in the Tools menu under Writing Statistics. You can
also launch it by pressing F6.

The tool will show a list of all your sessions, and a set of filters to apply to the data. You can also export
the filtered data to a JSON file or to a CSV file that can be opened by a spreadsheet application like for
instance Libre Office Calc.

As of version 1.2, the log file also stores how much of the session time was spent idle. The definition
of idle here is that the novelWriter main window loses focus, or the user hasn’t made any changes to the
currently open document in five minutes. The number of minutes can be altered in Preferences.

46 Chapter 12. Novel Projects

CHAPTER

THIRTEEN

NOVEL STRUCTURE

This section covers the structure of a novel project.

It concerns documents under the Novel type root folder only. There are some restrictions and features
that only apply to these types of documents.

13.1 Importance of Headings

Subfolders under root folders have no impact on the structure of the novel itself. The structure is instead
dictated by the heading level of the headers within the documents.

Four levels of headings are supported, signified by the number of hashes (#) preceding the title. See also
the Formatting Your Text section for more details about the markdown syntax.

Note: The header levels are not only important when generating the exported novel file, they are also
used by the indexer when building the outline tree in the Outline tab as well as the Novel tab of the project
tree. Each heading also starts a new region where new references and tags can be defined.

The syntax for the four basic header types, and the two special header types, is listed in section Headings.
The meaning of the four levels for the structure of your novel is as follows:

Header Level 1: Partition This header level signifies that the text refers to a top level partition. This is
useful when you want to split the manuscript up into books, parts, or acts. These headings are not
required. The novel title itself should use the special header level one code explained in Headings.

Header Level 2: Chapter This header level signifies a chapter level partition. Each time you want to
start a new chapter, you must add such a heading. If you choose to split your manuscript up into
one document per scene, you need a single chapter document with just the heading. You can of
course also add a synopsis and reference keywords to the chapter document. If you want to open
the chapter with a quote or other introductory text that isn’t part of a scene, this is also where you’d
put that text.

Header Level 3: Scene This header level signifies a scene level partition. You must provide a title text,
but the title text can be replaced with a scene separator or just skipped entirely when you export
your manuscript.

Header Level 4: Section This header level signifies a sub-scene level partition, usually called a “sec-
tion” in the documentation and the user interface. These can be useful if you want to change tag
references mid-scene, like if you change the point-of-view character. You are free to use sections
as you wish, and can filter them out of the final manuscript just like with scene titles.

47

novelWriter Documentation, Release 1.6.6

Page breaks are automatically added before level 1 and 2 headers when you export your project to a format
that supports page breaks, or when you print the document directly from the build tool. If you want page
breaks in other places, you have to specify them manually. See Vertical Space and Page Breaks.

Tip: There are multiple options of how to process novel titles when exporting the manuscript. For
instance, chapter numbers can be applied automatically, and so can scene numbers if you want them in a
draft manuscript. See the Exporting Projects page for more details.

13.1.1 Novel Title and Front Matter

It is recommended that you add a document at the very top of your project with the novel title as the first
line. You should modify the level 1 header format code with an ! in order to render it as a document title
that is excluded from any automatic Table of Content in an exported document, like so:

#! My Novel

The title is by default centred on the page when exported. You can add more text to the page as you wish,
like for instance the author’s name and details.

If you want an additional page of text after the title page, starting on a fresh page, you can add [NEW
PAGE] on a line by itself, and continue the text after it. This will insert a page break when the project is
exported.

13.1.2 Unnumbered Chapter Headings

If you use the automatic numbering feature for your chapters, but you want to keep some special chapters
separate from this, you cam add a ! to the level 2 header formatting code to tell the build tool to skip
these chapters.

##! Unnumbered Chapter Title

There is a separate formatting feature for such chapters in the Build Novel Project tool as well. See the
Exporting Projects page for more details. When exporting to a format that supports page breaks, also
unnumbered chapters will have a page break added just like for normal chapters.

Note: Previously, you could also disable the automatic numbering of a chapter by adding an * as the
first character of the chapter title itself. This feature has been dropped in favour of the current format in
order to keep level 1 and 2 headers consistent. Please update your chapter headings if you’ve used this
syntax.

48 Chapter 13. Novel Structure

novelWriter Documentation, Release 1.6.6

13.2 Tag References

Each text partition, indicated by a heading of any level, can contain references to tags set in the supporting
notes of the project. The references are gathered by the indexer and used to generate an outline view on
the Outline tab of how the different parts of the novel are connected. This section covers how to set
references to tags. See Tags in Notes for how to define tags the references can point to.

References and tags are also clickable in the document editor and viewer, making it easy to navigate
between reference notes while writing. Clicked links are always opened in the view panel.

References are set as a keyword and a list of corresponding tags. The valid keywords are listed below. The
format of a reference line is @keyword: value1, [value2] ... [valueN]. All keywords allow
multiple values.

@pov The point-of-view character for the current section. The target must be a note tag in the Character
type root folder.

@focus The character that has the focus for the current section. This can be used in cases where the
focus is not a point-of-view character. The target must be a note tag in the Character type root
folder.

@char Other characters in the current section. The target must be a note tag in the Character type root
folder. This should not include the point-of-view character.

@plot The plot or subplot advanced in the current section. The target must be a note tag in the Plot type
root folder.

@time The timelines touched by the current section. The target must be a note tag in the Timeline type
root folder.

@location The location the current section takes place in. The target must be a note tag in the Locations
type root folder.

@object Objects present in the current section. The target must be a note tag in the Object type root
folder.

@entity Entities present in the current section. The target must be a note tag in the Entities type root
folder.

@custom Custom references in the current section. The target must be a note tag in a Custom type root
folder. You can add more than one Custom folder, but they all use the same reference keyword.

The syntax highlighter will alert the user that the tags and references are used correctly, and that the tags
referenced exist.

The highlighter may be mistaken if the index of defined tags is out of date. If so, press F9 to regenerate
it, or select Rebuild Index from the Tools menu. In general, the index for a document is regenerated when
it is saved, so this shouldn’t normally be necessary.

13.2. Tag References 49

novelWriter Documentation, Release 1.6.6

13.3 Document Layout

All documents in the project can have a layout format set. Previously, there were multiple layouts available
to change how the documents where formatted on export. These have now been reduced to just two
layouts: Novel Document and Project Note.

Novel documents can only live in the Novel root folder. You can also move them to Archive and Trash of
course. Project notes can be added anywhere in the project.

Depending on which icon theme you’re using, the project tree can distinguish between the different lay-
outs and header levels of the documents to help indicate which are project notes and which are novel
documents containing a partition, chapter, or scene. If the icon theme you’ve selected doesn’t show a
difference, you can still see the layout description in the details panel below the project tree.

Tip: You can always start writing with a coarse setup with one or a few documents, and then later use
the split tool to automatically split the documents into separate chapter and scene documents. You can
split a document on any of the four header levels.

50 Chapter 13. Novel Structure

CHAPTER

FOURTEEN

PROJECT NOTES

novelWriter doesn’t have a database and complicated forms for filling in details about plot elements,
characters, and all sorts of additional information that isn’t a part of the novel text itself. Instead, all such
information is saved in notes that are written and maintained just like all other text in your project.

The relation between all these additional elements is extracted from the documents and notes by the
project indexer, based on the tags and references you set within them.

Using notes is not required, but making at least minimal notes for each plot element, and adding a tag to
them, makes it possible to use the Outline feature to see how each element intersects with each section
of the novel itself, and adds clickable cross-references between documents in the editor and viewer.

14.1 Tags in Notes

Each new heading in a note can have a tag associated with it. The format of a tag is @tag: tagname,
where tagname is a unique identifier. Tags can then be referenced in the novel documents, or cross-
referenced in other notes, and will show up in the outline view and in the back-reference panel when a
document is being viewed. See Tag References for how to reference notes.

The syntax highlighter will alert the user that the keyword is correctly used and that the tag is allowed,
that is, the tag is unique. Duplicate tags should be detected as long as the index is up to date. An invalid
tag should have a green wiggly line under it, and will not receive the syntax colour that valid tags do.

The tag is the only part of these notes that the application uses. The rest of the document content is there
for the writer to use in whatever way they wish. Of course, the content of the documents can be exported
if you want to compile a single document of all your notes, or include them in an outline.

A note can also reference other notes in the same way novel documents do. When the note is opened in
the view panel, the references become clickable links, making it easier to follow connections in the plot.
Notes don’t show up in the outline view though, so referencing between notes is only meaningful if you
want to be able to click-navigate between them.

Tip: If you cross-reference between notes and export your project as an HTML document using the
Build Novel Project tool, the cross-references become clickable links in the exported HTML document.

51

novelWriter Documentation, Release 1.6.6

52 Chapter 14. Project Notes

CHAPTER

FIFTEEN

EXPORTING PROJECTS

The novelWriter project can be exported in various formats using the build tool available from Build
Novel Project in the Tools menu, or by pressing F5.

15.1 Header Formatting

The titles for the five types of titles (the chapter headings come in a numbered and unnumbered ver-
sion) of story structure can be formatted collectively in the build tool. This is done through a series of
keyword–replace steps. They are all on the format %keyword%.

%title% This keyword will always be replaced with the title text you put after the # characters in your
document.

%ch% This will be replaced by a chapter number. The number is incremented by one each time the build
tool sees a new heading of level two in a document, unless the heading formatting code has the
added !. In the latter case, the counter is not incremented. This is useful for for instance Prologue
and Epilogue chapters.

%chw% Behaves like %ch%, but the number is represented as a number word. You can select between a
number of different languages.

%chi% Begaves like %ch%, but represented as a lower case Roman number from 1 to 4999.

%chI% Behaves like %ch%, but represented as an upper case Roman number from 1 to 4999.

%sc% This is the number counter equivalent for scenes. These are incremented each time a heading of
level three is encountered, but reset to 1 each time a chapter is encountered. They can thus be used
for counting scenes within a chapter.

%sca% Behaves like %sc%, but the number is not reset to 1 for each chapter. Instead it runs from 1 from
the beginning of the novel to produce an absolute scene count.

\\ This inserts a line break within the title.

Note: Header formatting only applies to novel documents. Headings in notes will be left as-is.

Example

• The format %title% just reproduces the title you set in the document.

• The format Chapter %ch%: %title% produces something like “Chapter 1: My Chapter Title”.

• The format Scene %ch%.%sc% produces something like “Scene 1.2” for scene 2 in chapter 1.

53

novelWriter Documentation, Release 1.6.6

15.2 Scene Separators

If you don’t want any titles for your scenes (or for your sections if you have them), you can leave the
formatting boxes empty. If so, an empty paragraph will be inserted between the scenes or sections instead
resulting in a gap in the text.

Alternatively, if you want a separator between them, like the common * * *, you can enter the desired
separator text in the formatting box. In fact, if the format is a piece of static text, it will always be treated
as a separator.

15.3 File Selection

Which documents and notes are selected for export can be controlled from the options on the left side of
the dialog window. The switch for Include novel files will enable or disable inclusion of novel documents,
and the switch for Include note files will do the same for project notes. This allows for exporting just the
novel, just your notes, or both, as you wish.

In addition, you can select to export the synopsis comments, regular comments, keywords, and even
exclude the body text itself.

Tip: If you for instance want to export a document with an outline of the novel, you can enable keywords
and synopsis export and disable body text, thus getting a document with each heading followed by the
tags and references and the synopsis.

If you need to exclude specific documents from your exports, like draft documents or documents you
want to take out of your manuscript, but don’t want to delete, you can un-check the Include when building
project option for each such document in the project tree. An included document has a checkmark after
in the third column of the project tree. The Build Novel Project tool has a switch to ignore this flag if you
need to collectively override these settings.

15.4 Printing

The print button allows you to print the content in the preview window. You can either print to one of
your system’s printers, or print directly to a file as PDF. You can also print to file from the regular print
dialog. The direct to file option is just a shortcut.

15.5 Export Formats

Currently, six formats are supported for exporting.

Open Document Format The Build tool can produce either an .odt file, or an .fodt file. The latter is
just a flat version of the document format as a single XML file. Most rich text editors support the
former, and a few the latter.

novelWriter HTML The HTML export format writes a single .htm file with minimal style formatting.
The exported HTML document is suitable for further processing by document conversion tools
like Pandoc, for importing in word processors, or for printing from browser.

54 Chapter 15. Exporting Projects

novelWriter Documentation, Release 1.6.6

novelWriter Markdown This is simply a concatenation of the project documents selected by the filters.
The documents are stacked together in the order they appear in the project tree, with comments,
tags, etc. included if they are selected. This is a useful format for exporting the project for later
import back into novelWriter.

Standard/GitHub Markdown The Markdown export format comes in both Standard and GitHub
flavour. The only difference in terms of novelWriter functionality is the support for strikethrough
text, which is not supported by the Standard flavour, but is supported by the GitHub flavour.

15.6 Additional Export Options

In addition to the above document formats, the novelWriter HTML and Markdown formats can also be
wrapped in a JSON file. These files will have a meta data entry and a body entry. For HTML, also the
accompanying css styles are exported.

The text body is saved in a two-level list. The outer list contains one entry per exported document, in the
order they appear in the project tree. Each document is then split up into a list as well, with one entry per
paragraph it contains.

These files are mainly intended for scripted post-processing for those who want that option. A JSON file
can be imported directly into a Python dict object or a PHP array, to mentions a few options.

15.6. Additional Export Options 55

novelWriter Documentation, Release 1.6.6

56 Chapter 15. Exporting Projects

CHAPTER

SIXTEEN

FILE LOCATIONS

novelWriter will create a few files on your system outside of the application folder itself. These file
locations are described in this document.

16.1 Configuration

The general configuration of novelWriter, including everything that is in Preferences, is saved in one
central configuration file. The location of this file depends on your operating system. The system paths
are provided by the Qt QStandardPaths class and its ConfigLocation value.

The standard paths are:

• Linux: ~/.config/novelwriter/novelwriter.conf

• macOS: ~/Library/Preferences/novelwriter/novelwriter.conf

• Windows: C:\Users\<USER>\AppData\Local\novelwriter\novelwriter.conf

Here, ~ corresponds to the user’s home directory on Linux and macOS, and <USER> is the user’s username
on Windows.

Note: These are the standard operating system defined locations. If your system has been set up in a
different way, these locations may also be different.

16.2 Application Data

novelWriter also stores a bit of data that is generated by the user’s actions. This includes the list of recent
projects form the Open Project dialog. Custom themes are also saved here. The system paths are provided
by the Qt QStandardPaths class and its AppDataLocation value on Qt 5.4 or greater, or DataLocation for
earlier versions.

The standard paths are:

• Linux: ~/.local/share/novelwriter/

• macOS: ~/Library/Application Support/novelwriter/

• Windows: C:\Users\<USER>\AppData\Roaming\novelwriter\

Here, ~ corresponds to the user’s home directory on Linux and macOS, and <USER> is the user’s username
on Windows.

57

https://doc.qt.io/qt-5/qstandardpaths.html
https://doc.qt.io/qt-5/qstandardpaths.html

novelWriter Documentation, Release 1.6.6

Note: These are the standard operating system defined locations. If your system has been set up in a
different way, these locations may also be different.

58 Chapter 16. File Locations

CHAPTER

SEVENTEEN

HOW DATA IS STORED

This section contains details of how novelWriter stores and handles the project data.

17.1 Project Structure

All novelWriter files are written with utf-8 encoding. Since Python automatically converts Unix line
endings to Windows line endings on Windows systems, novelWriter does not make any adaptations to
the formatting on Windows systems. This is handled entirely by the Python standard library. Python
also handles this fairly well when working on the same files on both Windows and Unix-based operating
systems.

17.1.1 Main Project File

The project itself requires a dedicated folder for storing its files where novelWriter will create its own
“file system” where the folder and file hierarchy is described in a project XML file. This is the main
project file in the project’s root folder with the name nwProject.nwx. This file also contains all the
meta data required for the project, and a number of related project settings.

If this file is lost or corrupted, the structure of the project is lost, although not the text itself. It is important
to keep this file backed up, either through the built-in backup tool, or your own backup solution.

Tip: The novelWriter project folder is structured so that it can easily be added to a version control
system like git. If you do so, you may want to add a .gitignore file to exclude files with the extensions
.json as JSON files are used to cache the index and various run-time settings and are generally large files
that change often. You’d also want to exclude the cache folder.

The project XML file is indent-formatted, and is suitable for diff tools and version control since most of
the file will stay static, although a timesetamp is set in the meta section on line 2, and various meta data
entries incremented, on each save.

59

novelWriter Documentation, Release 1.6.6

17.2 Project Documents

All the project documents are saved in a folder in the main project folder named content. Each doc-
ument has a file handle taken from the first 13 characters of a SHA256 hash of the system time when
the document was first created, plus an incremented number. The documents are saved with a filename
assembled from this hash and the file extension .nwd.

If you wish to find the file system location of a document in the project, you can either look it up in the
project XML file, select Show File Details from the Document menu when having the document open,
or look in the ToC.txt file in the root of the project folder. The ToC.txt file has a list of all documents
in the project, referenced by their label, and where they are saved.

The reason for this cryptic file naming is to avoid issues with file naming conventions and restrictions on
different operating systems, and also to have a file name that does not depend on what the user names the
document within the project, or changes it to.

Each document file contains a plain text version of the text from the editor. The file can in principle be
edited in any text editor, and is suitable for diffing and version control if so desired. Just make sure the file
remains in utf-8 encoding, otherwise unicode characters may become mangled when the file is opened
in novelWriter again.

Editing these files is generally not recommended outside of special circumstances, whatever they may
be. The reason for this is that the index will not be automatically updated when doing so, which means
novelWriter doesn’t know you’ve altered the file. If you do edit a file in this manner, you should rebuild
the index when you next open the project in novelWriter.

The first lines of the file may contain some meta data starting with the characters %%~. These lines are
mainly there to restore some information if it is lost from the project file, and the information may be
helpful if you do open the file in an external editor as it contains the document label and the document
class and layout. The lines can be deleted without any consequences to the rest of the content of the file,
and will be added back the next time the document is saved in novelWriter.

17.2.1 The File Saving Process

When saving the project file, or any of the documents, the data is first saved to a temporary file. If
successful, the old data file is then removed, and the temporary file becomes the new file. This ensures
that the previously saved data is only replaced when the new data has been successfully saved to the
storage medium.

For the project XML file, a .bak file is in addition kept, which will always contain the previous version
of the file, although when auto-save is enabled, they may have the same content. If the opening of a
project file fails, novelWriter will automatically try to open the .bak file instead.

17.3 Project Meta Data

The project folder contains a subfolder named meta, containing a number of files. The meta folder
contains semi-important files. That is, they can be lost with only minor impact to the project.

If you use version control software on your project, you can exclude this folder, although you may want
to track the session log file. The JSON files within this folder can safely be ignored as they will be
automatically regenerated if lost.

60 Chapter 17. How Data is Stored

novelWriter Documentation, Release 1.6.6

17.3.1 The Project Index

Between writing sessions, the project index is saved in a JSON file in meta/tagsIndex.json. This file
is not critical. If it is lost, it can be rebuilt from within novelWriter from the Tools menu.

The index is maintained and updated whenever a document or note is saved in the editor. It contains all
references and tags in documents and notes, as well as the location of all headers in the project, and the
word counts within each header section.

The integrity of the index is checked when the file is loaded. It is possible to corrupt the index if the file
is manually edited and manipulated, so the check is important to avoid sudden crashes of novelWriter.
If the file contains errors, novelWriter will automatically build it anew. If the check somehow fails and
novelWriter keeps crashing, you can delete the file manually and rebuild the index. If this too fails, you
have likely encountered a bug.

17.3.2 Cached GUI Options

A file named meta/guiOptions.json contains the latest state of various GUI buttons, switches, dialog
window sizes, column sizes, etc, from the GUI. These are the GUI settings that are specific to the project.
Global GUI settings are stored in the main config file.

The file is not critical, but if it is lost, all such GUI options will revert back to their default settings.

17.3.3 Session Stats

The writing progress is saved in the meta/sessionStats.log file. This file records the length and
word counts of each writing session on the given project. The file is used by the Writing Statistics tool.
If this file is lost, the history it contains is also lost, but it has otherwise no impact on the project.

17.4 Project Cache

The project cache folder contains non-critical files. If these files are lost, there is no impact on the
functionality of novelWriter or the history of the project. It contains temporary files, like the preview
document in the Build Novel Project tool.

It should be excluded from version control tools if such are used.

17.4. Project Cache 61

novelWriter Documentation, Release 1.6.6

62 Chapter 17. How Data is Stored

CHAPTER

EIGHTEEN

RUNNING TESTS

The novelWriter source code is well covered by tests. The test framework used for the development is
pytest with the use of an extension for Qt.

18.1 Dependencies

The dependencies for running the tests can be installed with:

pip install -r requirements-dev.txt

This will install a couple of extra packages for coverage and test management. The minimum requirement
is just pytest and pytest-qt.

18.2 Simple Test Run

To run the tests, you simply need to execute the following from the root of the source folder:

pytest

Since several of the tests involve opening up the novelWriter GUI, you may want to disable the GUI for
the duration of the test run. Moving your mouse while the tests are running may otherwise interfere with
the execution of some tests.

You can disable the renderring of the GUI by setting the flag export QT_QPA_PLATFORM=offscreen,
or alternatively run the tests with the xvfb package, like so:

xvfb-run pytest

18.3 Advanced Options

Adding the flag -v to the pytest command will increase verbosity of the test execution.

You can also add coverage report generation. For instance to HTML:

xvfb-run pytest -v --cov=novelwriter --cov-report=html

63

novelWriter Documentation, Release 1.6.6

Other useful report formats are xml, and term for terminal output.

You can also run tests per subpackage of novelWriter with the -m command. The available subpackage
groups are base, core, and gui. Consider for instance:

xvfb-run pytest -v --cov=novelwriter --cov-report=html -m core

This will only run the tests of the “core” package, that is, all the classes that deal with the project data
of a novelWriter project. The “gui” tests, likewise, will run the tests for the GUI components, and the
“base” tests cover the bits in-between.

You can also filter the tests with the -k switch. The following will do the same as -m core:

xvfb-run pytest -v --cov=novelwriter --cov-report=html -k testCore

All tests are named in such a way that you can filter them by adding more bits of the test names. They
all start with the word “test”. Then comes the group: “Core”, “Base”, “Dlg”, “Tool”, or “Gui”. Finally
comes the name of the class or module, which generally corresponds to a single source code file. For
instance, running the following will run all tests for the document editor:

xvfb-run pytest -v --cov=novelwriter --cov-report=html -k testGuiEditor

To run a single test, simply add the full test name to the -k switch.

64 Chapter 18. Running Tests

	Key Features
	Screenshots

	Overview
	Using novelWriter
	Organising Your Projects

	Getting Started
	Install on Windows
	Install on Debian/Ubuntu/Mint
	Ubuntu and Mint
	Debian

	Minimal Package Install
	Windows
	Linux
	macOS

	Install from PyPi

	Running from Source
	Dependencies
	Install from Source
	Building the Translation Files
	Building the Documentation

	Customisations
	Spell Check Dictionaries
	Syntax and GUI Themes
	Theme CSS Files

	How it Works
	GUI Layout and Design
	Window Tabs and Areas
	Colour Themes

	Project Layout
	Project Export
	Project Storage

	The User Interface
	The Project Tree
	The Novel Tree
	Document Importance and Status
	Project Tree Drag & Drop

	Editing and Viewing Documents
	Search & Replace

	Auto-Replace as You Type
	Project Outline View

	Formatting Your Text
	Syntax Highlighting
	Headings
	Text Paragraphs
	Text Emphasis
	Comments and Synopsis
	Tags and References
	Paragraph Alignment and Indentation
	Vertical Space and Page Breaks

	Keyboard Shortcuts
	Main Shortcuts
	Insert Shortcuts

	Typographical Notes
	Special Notes on Symbols
	Dashes and Ellipsis
	Single and Double Quotes
	Single and Double Prime
	Modifier Letter Apostrophe
	Special Space Symbols

	Project Format Changes
	Format 1.3 Changes
	Format 1.2 Changes
	Format 1.1 Changes
	Format 1.0 Changes

	Novel Projects
	Project Roots
	Deleted Documents
	Archived Documents
	Recovered Documents
	Project Lockfile
	Using Folders in the Project Tree

	Project Documents
	Word Counts

	Project Settings
	Settings Tab
	Status and Importance Tabs
	Auto-Replace Tab

	Backup
	Writing Statistics

	Novel Structure
	Importance of Headings
	Novel Title and Front Matter
	Unnumbered Chapter Headings

	Tag References
	Document Layout

	Project Notes
	Tags in Notes

	Exporting Projects
	Header Formatting
	Scene Separators
	File Selection
	Printing
	Export Formats
	Additional Export Options

	File Locations
	Configuration
	Application Data

	How Data is Stored
	Project Structure
	Main Project File

	Project Documents
	The File Saving Process

	Project Meta Data
	The Project Index
	Cached GUI Options
	Session Stats

	Project Cache

	Running Tests
	Dependencies
	Simple Test Run
	Advanced Options

